A novel deep learning method for maize disease identification based on small sample-size and complex background datasets

人工智能 计算机科学 深度学习 分类器(UML) 鉴定(生物学) 学习迁移 机器学习 模式识别(心理学) 卷积神经网络 样本量测定 统计 数学 生物 植物
作者
Enlin Li,Liwei Wang,Qiuju Xie,Rui Gao,Zhongbin Su,Yonggang Li
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:75: 102011-102011 被引量:54
标识
DOI:10.1016/j.ecoinf.2023.102011
摘要

Maize diseases are a major source of yield loss, but due to the lack of human experience and limitations of traditional image-recognition technology, obtaining satisfactory large-scale identification results of maize diseases are difficult. Fortunately, the advancement of deep learning-based technology makes it possible to automatically identify diseases. However, it still faces issues caused by small sample sizes and complex field background, which affect the accuracy of disease identification. To address these issues, a deep learning-based method was proposed for maize disease identification in this paper. DenseNet121 was used as the main extraction network and a multi-dilated-CBAM-DenseNet (MDCDenseNet) model was built by combining the multi-dilated module and convolutional block attention module (CBAM) attention mechanism. Five models of MDCDenseNet, DenseNet121, ResNet50, MobileNetV2, and NASNetMobile were compared and tested using three kinds of maize leave images from the PlantVillage dataset and field-collected at Northeast Agricultural University in China. Furthermore, auxiliary classifier generative adversarial network (ACGAN) and transfer learning were used to expand the dataset and pre-train for optimal identification results. When tested on field-collected datasets with a complex background, the MDCDenseNet model outperformed compared to these models with an accuracy of 98.84%. Therefore, it can provide a viable reference for the identification of maize leaf diseases collected from the farmland with a small sample size and complex background.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚定的雁完成签到 ,获得积分10
2秒前
你快睡吧完成签到,获得积分10
3秒前
桐桐应助还是做不出来么采纳,获得10
5秒前
酷波er应助开朗思雁采纳,获得10
5秒前
7秒前
英姑应助yunyunya采纳,获得10
7秒前
9秒前
英俊元正完成签到,获得积分10
11秒前
13秒前
Libgenxxxx完成签到,获得积分10
13秒前
lw777完成签到,获得积分10
14秒前
YOGA1115发布了新的文献求助10
14秒前
bloodice发布了新的文献求助10
15秒前
星星完成签到,获得积分10
16秒前
16秒前
mycishere发布了新的文献求助10
16秒前
jsy987完成签到,获得积分10
18秒前
英俊的铭应助kkk采纳,获得10
18秒前
科研通AI5应助shjyang采纳,获得10
19秒前
冷静访梦发布了新的文献求助10
19秒前
19秒前
共享精神应助小唐采纳,获得10
20秒前
自然的霸完成签到 ,获得积分10
20秒前
21秒前
开朗思雁发布了新的文献求助10
22秒前
yunyunya发布了新的文献求助10
24秒前
海贼学术完成签到 ,获得积分10
24秒前
jianhan发布了新的文献求助10
25秒前
悲凉的忆寒完成签到,获得积分20
27秒前
可取完成签到,获得积分10
27秒前
YOGA1115完成签到,获得积分10
29秒前
29秒前
29秒前
慕青应助Ir采纳,获得30
32秒前
Zzoe_S完成签到,获得积分10
35秒前
36秒前
jsy987关注了科研通微信公众号
37秒前
所所应助搞怪的醉波采纳,获得10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781487
求助须知:如何正确求助?哪些是违规求助? 3327147
关于积分的说明 10229660
捐赠科研通 3041974
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757