Predicton of major adverse cardiovascular events in patients with hypertrophic cardiomyopathy by deep learning and radiomics

狼牙棒 接收机工作特性 肥厚性心肌病 医学 胸骨旁线 机器学习 特征选择 人工智能 Lasso(编程语言) 内科学 无线电技术 心脏病学 放射科 心肌梗塞 计算机科学 万维网 传统PCI
作者
Jiangtao Wang,Biaohu Liu,Caiyun Xia,Sensen Wang
出处
期刊:Cardiology [Karger Publishers]
卷期号:: 1-20
标识
DOI:10.1159/000547232
摘要

Introduction Hypertrophic cardiomyopathy (HCM) patients may be at risk for major adverse cardiovascular events (MACE), making risk stratification essential for implementing interventions in high-risk individuals. Deep transfer learning (DTL) and radiomics have made significant advances in the medical field; however, to date, no studies have combined echocardiography in HCM patients with DTL and radiomics to develop predictive models for identifying individuals at risk for MACE. Methods This study is a retrospective analysis that included 210 HCM patients, with a mean follow-up time of 29.44 ± 16.21 months. Among the patients, 59 experienced MACE and 151 non-MACE. The patients were randomly divided into training and validation sets in an 8:2 ratio. We collected chest parasternal left ventricular long-axis and short-axis images, with the left ventricular myocardial region defined as the region of interest (ROI). Radiomics features were extracted using the Pyradiomics software package, and DTL features were obtained through the pre-trained Resnet50 model. These radiomics and DTL features were then combined, and feature selection was conducted using the Least Absolute Shrinkage and Selection Operator (LASSO). The selected features were used to construct the DTL-RAD predictive model with machine learning algorithms. The model's diagnostic performance was evaluated using the Receiver Operating Characteristic (ROC) curve and Decision Curve Analysis (DCA). Finally, we compared the prediction performance of the DTL-RAD model with those of models built using only radiomics features or only DTL features. Results The diagnostic performance of the DTL-RAD model in both the training and validation sets was excellent, with AUC values of 0.936 and 0.918, specificity values of 0.852 and 0.767, and sensitivity values of 0.892 and 0.929, respectively. It significantly outperformed models that used only radiomics or DTL features. Furthermore, the DCA demonstrated that the DTL-RAD model exhibited superior clinical applicability and effectiveness, surpassing the performance of other models. Conclusion The DTL-RAD model demonstrated exceptional performance in identifying HCM patients at risk of MACE, accurately detecting high-risk individuals among HCM patients at an early stage. This provides a basis for precise clinical intervention, effectively reducing the incidence of MACE in HCM patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼粥很好完成签到,获得积分10
1秒前
1秒前
Hello应助欢喜的凡之采纳,获得10
1秒前
2秒前
咿呀咿呀完成签到 ,获得积分10
3秒前
和谐的敏发布了新的文献求助30
3秒前
万能图书馆应助葛老四采纳,获得10
4秒前
5秒前
祥印完成签到,获得积分10
5秒前
5秒前
奉年完成签到,获得积分10
6秒前
zxc发布了新的文献求助10
6秒前
11发布了新的文献求助10
6秒前
whoops完成签到 ,获得积分10
7秒前
8秒前
hzbzh发布了新的文献求助10
8秒前
10秒前
清风徐来发布了新的文献求助10
10秒前
芒果酸奶发布了新的文献求助10
12秒前
14秒前
健康的涔完成签到,获得积分10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
你的风筝应助科研通管家采纳,获得20
14秒前
明明完成签到,获得积分10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
15秒前
葛老四发布了新的文献求助10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
JamesPei应助骐骥过隙采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165605
求助须知:如何正确求助?哪些是违规求助? 3701150
关于积分的说明 11685372
捐赠科研通 3389933
什么是DOI,文献DOI怎么找? 1859135
邀请新用户注册赠送积分活动 919563
科研通“疑难数据库(出版商)”最低求助积分说明 832173