亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SeCoV2: Semantic Connectivity-Driven Pseudo-Labeling for Robust Cross-Domain Semantic Segmentation

计算机科学 域适应 分割 人工智能 图形 领域(数学分析) 像素 一般化 粒度 一致性(知识库) 机器学习 模式识别(心理学) 理论计算机科学 操作系统 分类器(UML) 数学分析 数学
作者
Dong Zhao,Qi Zang,Nan Pu,Shuang Wang,Nicu Sebe,Zhun Zhong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (11): 10378-10395
标识
DOI:10.1109/tpami.2025.3596943
摘要

Pseudo-labeling is a dominant strategy for cross-domain semantic segmentation (CDSS), yet its effectiveness is limited by fragmented and noisy pixel-level predictions under severe domain shifts. To address this, we propose a semantic connectivity-driven pseudo-labeling framework, SeCo, which constructs and refines pseudo-labels at the connectivity level by aggregating high-confidence pixels into coherent semantic regions. The framework includes two key components: Pixel Semantic Aggregation (PSA), which leverages a dual prompting strategy to preserve category-specific granularity, and Semantic Connectivity Correction with Loss Distribution (SCC-LD), which filters noisy regions based on early-loss statistics. Building upon this foundation, we further present SeCoV2, which introduces SCC-Unc, a novel uncertainty-aware correction module that constructs a connectivity graph and enforces relational consistency for robust refinement in ambiguous regions. SeCoV2 also broadens the applicability of SeCo by extending evaluation to more challenging scenarios, including open-set and multimodal adaptation, semi-supervised domain generalization, and by validating compatibility with different interactive foundation segmentation models such as SAM Kirillov et al. 2023, SEEM Zou et al. 2023, and Fast-SAM Zhao et al. 2023. Extensive experiments across six CDSS tasks demonstrate that SeCoV2 achieves consistent improvements over previous methods, with an average performance gain of up to +4.6%, establishing new state-of-the-art results. These findings highlight the effectiveness and generalization ability for robust adaptation in diverse real-world environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
tutu完成签到,获得积分0
34秒前
青桔柠檬完成签到 ,获得积分10
36秒前
魏青瑜应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
魏青瑜应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
涛涛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
独特的师完成签到,获得积分20
1分钟前
qingshu完成签到,获得积分10
1分钟前
qingshu发布了新的文献求助10
1分钟前
独孤家驹完成签到 ,获得积分10
1分钟前
独特的师发布了新的文献求助10
1分钟前
1分钟前
忧郁如柏完成签到,获得积分10
2分钟前
魏青瑜应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
领导范儿应助koubi采纳,获得10
3分钟前
3分钟前
敢敢97发布了新的文献求助10
3分钟前
MchemG完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
怎么又要取名字完成签到 ,获得积分10
4分钟前
星辰大海应助crane采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得30
5分钟前
魏青瑜应助科研通管家采纳,获得30
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
5分钟前
koubi完成签到,获得积分20
5分钟前
安啾啦啦辣完成签到,获得积分10
5分钟前
koubi发布了新的文献求助10
5分钟前
科研通AI6应助安啾啦啦辣采纳,获得10
5分钟前
CodeCraft应助lcubiozy采纳,获得10
5分钟前
热情依白发布了新的文献求助10
6分钟前
6分钟前
lcubiozy发布了新的文献求助10
6分钟前
Oli完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470333
求助须知:如何正确求助?哪些是违规求助? 4573151
关于积分的说明 14338163
捐赠科研通 4500194
什么是DOI,文献DOI怎么找? 2465615
邀请新用户注册赠送积分活动 1453965
关于科研通互助平台的介绍 1428615