纳米工程
电合成
材料科学
催化作用
介孔材料
纳米技术
化学工程
选择性
多孔介质
纳米片
限制电流
多孔性
化学
复合材料
电化学
有机化学
物理化学
电极
工程类
作者
Qiang Tian,Lingyan Jing,Yunchao Yin,Zhenye Liang,Hongnan Du,Lin Yang,Xiaolei Cheng,Daxian Zuo,Cheng Tang,Zhuoxin Liu,Jian Liu,Jiayu Wan,Jinlong Yang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-01-24
卷期号:24 (5): 1650-1659
被引量:10
标识
DOI:10.1021/acs.nanolett.3c04396
摘要
Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5–10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of −3.1 mA cm–2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst–1 h–1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI