Recent developments in denoising medical images using deep learning: An overview of models, techniques, and challenges

医学诊断 人工智能 医学影像学 卷积神经网络 深度学习 噪音(视频) 领域(数学) 降噪 莱斯衰减 计算机科学 模式识别(心理学) 机器学习 图像(数学) 算法 医学 数学 解码方法 病理 衰退 纯数学
作者
Nahida Nazir,Abid Sarwar,Baljit Singh Saini
出处
期刊:Micron [Elsevier]
卷期号:180: 103615-103615 被引量:50
标识
DOI:10.1016/j.micron.2024.103615
摘要

Medical imaging plays a critical role in diagnosing and treating various medical conditions. However, interpreting medical images can be challenging even for expert clinicians, as they are often degraded by noise and artifacts that can hinder the accurate identification and analysis of diseases, leading to severe consequences such as patient misdiagnosis or mortality. Various types of noise, including Gaussian, Rician, and Salt-pepper noise, can corrupt the area of interest, limiting the precision and accuracy of algorithms. Denoising algorithms have shown the potential in improving the quality of medical images by removing noise and other artifacts that obscure essential information. Deep learning has emerged as a powerful tool for image analysis and has demonstrated promising results in denoising different medical images such as MRIs, CT scans, PET scans, etc. This review paper provides a comprehensive overview of state-of-the-art deep learning algorithms used for denoising medical images. A total of 120 relevant papers were reviewed, and after screening with specific inclusion and exclusion criteria, 104 papers were selected for analysis. This study aims to provide a thorough understanding for researchers in the field of intelligent denoising by presenting an extensive survey of current techniques and highlighting significant challenges that remain to be addressed. The findings of this review are expected to contribute to the development of intelligent models that enable timely and accurate diagnoses of medical disorders. It was found that 40% of the researchers used models based on Deep convolutional neural networks to denoise the images, followed by encoder-decoder (18%) and other artificial intelligence-based techniques (15%) (Like DIP, etc.). Generative adversarial network was used by 12%, transformer-based approaches (13%) and multilayer perceptron was used by 2% of the researchers. Moreover, Gaussian noise was present in 35% of the images, followed by speckle noise (16%), poisson noise (14%), artifacts (10%), rician noise (7%), Salt-pepper noise (6%), Impulse noise (3%) and other types of noise (9%). While the progress in developing novel models for the denoising of medical images is evident, significant work remains to be done in creating standardized denoising models that perform well across a wide spectrum of medical images. Overall, this review highlights the importance of denoising medical images and provides a comprehensive understanding of the current state-of-the-art deep learning algorithms in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
dyq完成签到,获得积分10
2秒前
李哥完成签到,获得积分10
2秒前
SUN完成签到,获得积分10
3秒前
科研通AI6应助lilililia采纳,获得10
3秒前
kkuang发布了新的文献求助10
5秒前
LJ发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
Nn发布了新的文献求助10
7秒前
李欣华发布了新的文献求助10
8秒前
Lucas应助wuy采纳,获得10
8秒前
坚定芯完成签到,获得积分10
9秒前
发paper发布了新的文献求助10
9秒前
隐形曼青应助哈哈哈采纳,获得10
9秒前
长安关注了科研通微信公众号
9秒前
小羊完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
Akim应助Dr.向采纳,获得10
11秒前
11秒前
科研通AI6应助Pearl采纳,获得10
11秒前
spc68完成签到,获得积分10
12秒前
12秒前
13秒前
朴实无华的打工仔完成签到,获得积分10
13秒前
慕青应助高大的水壶采纳,获得10
13秒前
13秒前
Lucas应助wroy采纳,获得10
14秒前
耳机单蹦发布了新的文献求助10
15秒前
accept完成签到,获得积分10
15秒前
001发布了新的文献求助10
15秒前
风中亦玉发布了新的文献求助10
15秒前
mwx应助ww采纳,获得10
16秒前
感动钥匙发布了新的文献求助10
16秒前
诸葛朝雪发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520635
求助须知:如何正确求助?哪些是违规求助? 4612319
关于积分的说明 14532950
捐赠科研通 4549821
什么是DOI,文献DOI怎么找? 2493229
邀请新用户注册赠送积分活动 1474481
关于科研通互助平台的介绍 1446050