Cross-Modal Oriented Object Detection of UAV Aerial Images Based on Image Feature

遥感 人工智能 目标检测 计算机视觉 特征(语言学) 计算机科学 航空影像 情态动词 特征提取 图像(数学) 地质学 模式识别(心理学) 语言学 哲学 化学 高分子化学
作者
Huiying Wang,Chunping Wang,Qiang Fu,Dongdong Zhang,Renke Kou,Ying Yu,Jian Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-21 被引量:2
标识
DOI:10.1109/tgrs.2024.3367934
摘要

Arbitrary-oriented object detection is vital for improving UAV sensing and has promising applications. However, challenges persist in detecting objects under extreme conditions like low-illumination and strong occlusion. Cross-modal feature fusion enhances detection in complex environments but current methods do not adequately learn the features of each modality for the current environment, resulting in degraded performance. To tackle this, we propose the CRSIOD network that effectively learns diverse sensor image features to capture distinct scenarios and target characteristics. Firstly, we design an illumination perception module to guide the object detection network in performing various feature processing tasks. Secondly, to leverage the respective advantages of two modalities and mitigate their negative impacts, we introduce an uncertainty aware module to quantify the uncertainties present in each modality as weights to motivate the network to learn in a direction favorable for optimal object detection. Moreover, in the object detection network, we design a two-stream backbone network based on the attention mechanism to enhance the learning of difficult samples, utilize the CMAFF module to fully extract the shared and complementary features between the two modalities, and design a three-branch feature enhancement network to enhance the learning of the three modal features separately. Finally, to optimize detection results, we design light perception non-maximum suppression and improve the horizontal detection head to a rotating one to preserve object orientation. We evaluate the proposed method CRSIOD on the Drone Vehicle dataset of public UAV aerial images. Compared with the existing commonly used methods, CRSIOD achieves state-of-the-art detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
1秒前
嘻嘻应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
孙燕应助科研通管家采纳,获得20
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
嘻嘻应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
MchemG应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得20
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
Orange应助潇洒映冬采纳,获得10
3秒前
居然发布了新的文献求助10
3秒前
涟漪发布了新的文献求助10
3秒前
bingbing发布了新的文献求助10
4秒前
4秒前
刘明坤发布了新的文献求助10
5秒前
bkagyin应助Liu采纳,获得10
6秒前
6秒前
DZ完成签到,获得积分10
7秒前
穿山的百足公主完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
情怀应助欣喜忻采纳,获得30
11秒前
11秒前
英俊的铭应助雪白丹亦采纳,获得10
11秒前
窦房结完成签到 ,获得积分10
12秒前
哈哈哈完成签到,获得积分10
13秒前
自信服饰发布了新的文献求助10
14秒前
14秒前
酷炫的平蝶完成签到,获得积分10
14秒前
可可发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3877650
求助须知:如何正确求助?哪些是违规求助? 3420435
关于积分的说明 10717688
捐赠科研通 3145010
什么是DOI,文献DOI怎么找? 1735291
邀请新用户注册赠送积分活动 837531
科研通“疑难数据库(出版商)”最低求助积分说明 783187