Cognitive Load Prediction from Multimodal Physiological Signals using Multiview Learning

计算机科学 认知负荷 人工智能 特征选择 认知 模式识别(心理学) 特征(语言学) 冗余(工程) 机器学习 特征提取 心理学 语言学 哲学 神经科学 操作系统
作者
Yingxin Liu,Yang Yu,Hong Tao,Zeqi Ye,Si Wang,Hao Li,Dewen Hu,Zongtan Zhou,Ling‐Li Zeng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:13
标识
DOI:10.1109/jbhi.2023.3346205
摘要

Predicting cognitive load is a crucial issue in the emerging field of human-computer interaction and holds significant practical value, particularly in flight scenarios. Although previous studies have realized efficient cognitive load classification, new research is still needed to adapt the current state-of-the-art multimodal fusion methods. Here, we proposed a feature selection framework based on multiview learning to address the challenges of information redundancy and reveal the common physiological mechanisms underlying cognitive load. Specifically, the multimodal signal features (EEG, EDA, ECG, EOG, & eye movements) at three cognitive load levels were estimated during multiattribute task battery (MATB) tasks performed by 22 healthy participants and fed into a feature selection-multiview classification with cohesion and diversity (FS-MCCD) framework. The optimized feature set was extracted from the original feature set by integrating the weight of each view and the feature weights to formulate the ranking criteria. The cognitive load prediction model, evaluated using real-time classification results, achieved an average accuracy of 81.08% and an average F1-score of 80.94% for three-class classification among 22 participants. Furthermore, the weights of the physiological signal features revealed the physiological mechanisms related to cognitive load. Specifically, heightened cognitive load was linked to amplified δ and θ power in the frontal lobe, reduced α power in the parietal lobe, and an increase in pupil diameter. Thus, the proposed multimodal feature fusion framework emphasizes the effectiveness and efficiency of using these features to predict cognitive load.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
露宝发布了新的文献求助20
1秒前
硕shuo发布了新的文献求助10
1秒前
李健应助tesdpo采纳,获得10
2秒前
2秒前
科研通AI6应助星河采纳,获得10
3秒前
锦鲤完成签到,获得积分20
3秒前
3秒前
直率心锁发布了新的文献求助10
3秒前
能干的丸子完成签到,获得积分10
3秒前
樊家圣完成签到 ,获得积分10
3秒前
执着的似狮完成签到,获得积分10
4秒前
4秒前
super关注了科研通微信公众号
4秒前
甜甜的小虾米完成签到,获得积分10
4秒前
走进科学完成签到,获得积分10
5秒前
6秒前
可爱的函函应助莫天枫采纳,获得10
6秒前
7秒前
NexusExplorer应助CaiyunZhao采纳,获得10
7秒前
7秒前
zcl应助YHK采纳,获得50
8秒前
jianjiao发布了新的文献求助10
8秒前
单切切发布了新的文献求助10
8秒前
慕青应助梅洛采纳,获得10
8秒前
rues011发布了新的文献求助10
8秒前
搜集达人应助20030909采纳,获得10
9秒前
10秒前
在水一方应助juan采纳,获得10
10秒前
10秒前
10秒前
hnlgdx发布了新的文献求助10
11秒前
领导范儿应助plh采纳,获得50
11秒前
12秒前
桃子发布了新的文献求助10
12秒前
12秒前
Akim应助quan采纳,获得10
12秒前
铃铃铛发布了新的文献求助10
13秒前
程嘉玲发布了新的文献求助10
13秒前
Christine_完成签到,获得积分10
14秒前
xiaoma完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5362568
求助须知:如何正确求助?哪些是违规求助? 4492405
关于积分的说明 13987069
捐赠科研通 4395705
什么是DOI,文献DOI怎么找? 2414678
邀请新用户注册赠送积分活动 1407358
关于科研通互助平台的介绍 1381981