Non-destructive assessment of soluble solids content in kiwifruit using hyperspectral imaging coupled with feature engineering

高光谱成像 特征选择 特征(语言学) 一般化 冗余(工程) 计算机科学 人工智能 特征工程 堆积 模式识别(心理学) 偏最小二乘回归 质量(理念) 数学 机器学习 化学 数学分析 哲学 操作系统 认识论 深度学习 语言学 有机化学
作者
Wei Xu,Liangzhuang Wei,Wei Cheng,Xiangwei Yi,Yandan Lin
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:15 被引量:3
标识
DOI:10.3389/fpls.2024.1292365
摘要

The maturity of kiwifruit is widely gauged by its soluble solids content (SSC), with accurate assessment being essential to guarantee the fruit’s quality. Hyperspectral imaging offers a non-destructive alternative to traditional destructive methods for SSC evaluation, though its efficacy is often hindered by the redundancy and external disturbances of spectral images. This study aims to enhance the accuracy of SSC predictions by employing feature engineering to meticulously select optimal spectral features and mitigate disturbance effects. We conducted a comprehensive investigation of four spectral pre-processing and nine spectral feature selection methods, as components of feature engineering, to determine their influence on the performance of a linear regression model based on ordinary least squares (OLS). Additionally, the stacking generalization technique was employed to amalgamate the strengths of the two most effective models derived from feature engineering. Our findings demonstrate a considerable improvement in SSC prediction accuracy post feature engineering. The most effective model, when considering both feature engineering and stacking generalization, achieved an RMSEp of 0.721, a MAPEp of 0.046, and an RPDp of 1.394 in the prediction set. The study confirms that feature engineering, especially the careful selection of spectral features, and the stacking generalization technique are instrumental in bolstering SSC prediction in kiwifruit. This advancement enhances the application of hyperspectral imaging for quality assessment, offering benefits that extend across the agricultural industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽的问凝关注了科研通微信公众号
1秒前
CAOHOU应助zhoutiantian采纳,获得10
1秒前
朴素的夏青完成签到,获得积分10
1秒前
小赖想睡觉完成签到,获得积分10
2秒前
2秒前
2秒前
ED应助kkdkg采纳,获得10
3秒前
米十二发布了新的文献求助10
3秒前
天堂之光应助冷酷的又亦采纳,获得20
3秒前
刘晶玉发布了新的文献求助10
3秒前
Hua发布了新的文献求助10
3秒前
4秒前
hfgeyt发布了新的文献求助10
4秒前
4秒前
跳跃的若灵应助yv采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
种田发布了新的文献求助10
6秒前
chiahaokuo完成签到,获得积分20
6秒前
开心的BILL完成签到,获得积分10
6秒前
7秒前
共享精神应助义气乐珍采纳,获得10
7秒前
7秒前
ankh完成签到,获得积分20
7秒前
迷人世开发布了新的文献求助10
7秒前
8秒前
yuky完成签到,获得积分10
8秒前
xiaoyan发布了新的文献求助30
8秒前
10秒前
10秒前
10秒前
王正浩发布了新的文献求助10
12秒前
独特思真完成签到,获得积分10
12秒前
Sunnig盈发布了新的文献求助10
12秒前
麻师长完成签到,获得积分10
12秒前
蜗牛完成签到,获得积分10
13秒前
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4180674
求助须知:如何正确求助?哪些是违规求助? 3716196
关于积分的说明 11715320
捐赠科研通 3396698
什么是DOI,文献DOI怎么找? 1863647
邀请新用户注册赠送积分活动 921883
科研通“疑难数据库(出版商)”最低求助积分说明 833515