清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Microscopic urinary particle detection by different YOLOv5 models with evolutionary genetic algorithm based hyperparameter optimization

超参数 计算机科学 人工智能 遗传算法 尿沉渣 卷积神经网络 进化算法 人工神经网络 分割 特征(语言学) 机器学习 尿检 模式识别(心理学) 尿 生物 生物化学 语言学 哲学
作者
Kausar Suhail,D. Brindha
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107895-107895 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.107895
摘要

The diagnosis of kidney disease often involves analysing urine sediment particles. Traditionally, urinalysis was performed manually by collecting urine samples and using a centrifuge, which was prone to manual errors and relied on labour-intensive processes. Automated urine sediment microscopy, based on machine learning models, requires segmentation and feature extraction, which can hinder model performance due to intrinsic characteristics of microscopic images. Deep learning models based on convolutional neural networks (CNNs) often rely on a large number of manually annotated data, making the system computationally complex. This study propose an advanced deep learning model based on YOLOv5, which offers faster performance and requires comparatively less data. The proposed model used five variants of the YOLOv5 model (YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) to detect six categories of urine particles (erythrocyte, leukocyte, crystals, cast, mycete, epithelial cells) from microscopic urine sediment images. The dataset involved 5376 images of urine sediments with 6 particles. There are 30 sets of hyperparamreteres are employed in the YOLOv5 model. To optimize the hyperparameters and fine-tune with the urine sediment dataset and for training each model, the system employed a genetic algorithm (GA) based on evolutionary principles named as Evolutionary Genetic Algorithm (EGA). Among the six categories of detected particles mycete achieved maximum performance with a mAP of 97.6 % and crystals achieved minimum performance with a mAP of 81.7 % with YOLOv5x model compared to other particles. To optimize the hyperparameters for training each model, the system employed a genetic algorithm (GA) based on evolutionary principles named as Evolutionary Genetic Algorithm (EGA). Among all the models, YOLOv5l and YOLOv5x performed the best. YOLOv5l achieved a mean average precision (mAP) of 85.8 % while YOLOv5x achieved a mAP of 85.4 % at an IoU threshold of 0.5. The detection speed per image was 23.4 ms for YOLOv5l and 28.4 ms for YOLOv5x. The proposed method developed a faster and better automated microscopic model using advanced deep learning techniques to detect urinary particles from microscopic urine sediment images for kidney disease identification. The method demonstrated strong performance in urinalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绵羊座鸭梨完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
ZZ完成签到,获得积分10
28秒前
35秒前
36秒前
羞涩的文轩完成签到 ,获得积分10
37秒前
苗条高山发布了新的文献求助10
43秒前
48秒前
MMMMM应助科研通管家采纳,获得30
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
英喆完成签到 ,获得积分10
1分钟前
Yanmiii完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
lily完成签到 ,获得积分10
2分钟前
老石完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
MMMMM应助科研通管家采纳,获得30
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
小二郎应助xue采纳,获得10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
苏信怜完成签到,获得积分10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
nini完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4270418
求助须知:如何正确求助?哪些是违规求助? 3800870
关于积分的说明 11910965
捐赠科研通 3447741
什么是DOI,文献DOI怎么找? 1891032
邀请新用户注册赠送积分活动 941779
科研通“疑难数据库(出版商)”最低求助积分说明 845903