A Preoperative CT-based Multiparameter Deep Learning and Radiomic Model with Extracellular Volume Parameter Images Can Predict the Tumor Budding Grade in Rectal Cancer Patients

结直肠癌 医学 萌芽 瘤芽 体积热力学 放射科 计算机断层摄影术 核医学 癌症 内科学 生物 物理 遗传学 量子力学 转移 淋巴结转移
作者
Xi Tang,Zijian Zhuang,Jiang Li,Haitao Zhu,Dongqing Wang,Lirong Zhang
出处
期刊:Academic Radiology [Elsevier BV]
标识
DOI:10.1016/j.acra.2025.02.028
摘要

To investigate a computed tomography (CT)-based multiparameter deep learning-radiomic model (DLRM) for predicting the preoperative tumor budding (TB) grade in patients with rectal cancer. Data from 135 patients with histologically confirmed rectal cancer (85 in the Bd1+2 group and 50 in the Bd3 group) were retrospectively included. Deep learning (DL) features and hand-crafted radiomic (HCR) features were separately extracted and selected from preoperative CT-based extracellular volume (ECV) parameter images and venous-phase images. Six predictive signatures were subsequently constructed from machine learning classification algorithms. Finally, a combined DL and HCR model, the DLRM, was established to predict the TB grade of rectal cancer patients by merging the DL and HCR features from the two image sets. In the training and test cohorts, the AUC values of the DLRM were 0.976 [95% CI: 0.942-0.997] and 0.976 [95% CI: 0.942-1.00], respectively. The DLRM had good output agreement and clinical applicability according to calibration curve analysis and DCA, respectively. The DLRM outperformed the individual DL and HCR signatures in terms of predicting the TB grade of rectal cancer patients (p < 0.05). The DLRM can be used to evaluate the TB grade of rectal cancer patients in a noninvasive manner before surgery, thereby providing support for clinical treatment decision-making for these patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助入暖采纳,获得10
2秒前
2秒前
3秒前
3秒前
爱听歌的菲鹰完成签到,获得积分10
4秒前
zwd完成签到 ,获得积分10
5秒前
拼搏惜金完成签到,获得积分10
5秒前
阔达碧空发布了新的文献求助10
6秒前
田柾国发布了新的文献求助10
7秒前
江小鱼发布了新的文献求助20
8秒前
懦弱的咖啡豆完成签到,获得积分10
8秒前
科研通AI5应助KPJYW采纳,获得10
8秒前
8秒前
10秒前
鳗鱼尔安完成签到,获得积分10
10秒前
12秒前
鳗鱼尔安发布了新的文献求助10
14秒前
14秒前
合适千风发布了新的文献求助10
15秒前
16秒前
drz完成签到,获得积分10
16秒前
zhouyh发布了新的文献求助10
20秒前
22秒前
mei完成签到,获得积分10
22秒前
入暖发布了新的文献求助10
23秒前
汉堡包应助田柾国采纳,获得10
24秒前
24秒前
屈初雪完成签到,获得积分10
25秒前
起床了吗发布了新的文献求助10
27秒前
energyharvester完成签到 ,获得积分10
27秒前
Billy发布了新的文献求助10
28秒前
31秒前
科研通AI5应助喜悦的乐天采纳,获得10
31秒前
李健应助唐笑采纳,获得10
32秒前
33秒前
hexy629完成签到,获得积分10
33秒前
ZhouYW应助HL采纳,获得10
33秒前
zhouyh完成签到,获得积分10
34秒前
34秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
求该文附件!是附件!Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806902
求助须知:如何正确求助?哪些是违规求助? 3351674
关于积分的说明 10355196
捐赠科研通 3067522
什么是DOI,文献DOI怎么找? 1684579
邀请新用户注册赠送积分活动 809860
科研通“疑难数据库(出版商)”最低求助积分说明 765635