Improving the Hit Rates of Virtual Screening by Active Learning from Bioactivity Feedback

计算机科学 虚拟筛选 人机交互 数据科学 生物信息学 药物发现 生物
作者
Xun Deng,Junlong Liu,Zhike Liu,Jiansheng Wu,Fuli Feng,Jieping Ye,Zheng Wang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01618
摘要

Virtual screening has been widely used to identify potential hit candidates that can bind to the target protein in drug discovery. Contemporary screening methods typically rely on oversimplified scoring functions, frequently yielding one-digit hit rates (or even zero) among top-ranked candidates. The substantial cost of laboratory validation further constrains the exploration of candidate molecules. We find that test-time prediction refinement is almost blank in this area, which means bioactivity feedback in the wet-lab experiments is neglected. Here, we introduce an Active Learning from Bioactivity Feedback (ALBF) framework to enhance the weak hit rate of current virtual screening methods. ALBF spends the budget of wet-lab experiments iteratively and leverages the target-specific bioactivity insights from current wet-lab tests to refine the score results (i.e., rankings). Our framework consists of two components: a novel query strategy that considers the evaluation quality and its overall influence on other top-scored molecules; and an efficient score optimization strategy that propagates the bioactivity feedback to structurally similar molecules. We evaluated ALBF on diverse subsets of the well-known DUD-E and LIT-PCBA benchmarks. Our active learning protocol averagely enhances top-100 hit rates by 60% and 30% on DUD-E and LIT-PCBA with 50 to 200 bioactivity queries on the selected molecules that are deployed in ten rounds. The consistently superior performance demonstrates ALBF's potential to enhance both the accuracy and cost-effectiveness of active learning-based laboratory testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩轩完成签到,获得积分10
1秒前
精明一寡发布了新的文献求助10
1秒前
2秒前
2秒前
Anqi完成签到 ,获得积分10
3秒前
紧张的新烟完成签到,获得积分10
4秒前
胡子发布了新的文献求助10
4秒前
整齐泥猴桃完成签到,获得积分10
4秒前
wg发布了新的文献求助10
5秒前
LHT完成签到,获得积分10
6秒前
6秒前
7秒前
蔡从安发布了新的文献求助10
7秒前
9秒前
飞宇发布了新的文献求助20
13秒前
寻雾启事发布了新的文献求助10
14秒前
15秒前
细腻的秋天完成签到 ,获得积分10
16秒前
红枫没有微雨怜完成签到 ,获得积分10
18秒前
彩色映之完成签到,获得积分10
18秒前
wg完成签到,获得积分10
19秒前
非梦完成签到,获得积分10
20秒前
vicky完成签到,获得积分10
21秒前
21秒前
HH发布了新的文献求助10
21秒前
22秒前
酥小苏发布了新的文献求助10
22秒前
哒哒哒发布了新的文献求助10
22秒前
25秒前
wjl完成签到,获得积分10
25秒前
Felicia发布了新的文献求助10
26秒前
26秒前
27秒前
英姑应助TMX采纳,获得10
27秒前
LYY发布了新的文献求助10
27秒前
九九完成签到,获得积分10
29秒前
1234发布了新的文献求助10
29秒前
wykion完成签到,获得积分0
30秒前
32秒前
Leon完成签到,获得积分10
32秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Primate Cognition: Volume 1: Social Cognition (2nd edn) 400
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916376
求助须知:如何正确求助?哪些是违规求助? 3461854
关于积分的说明 10919326
捐赠科研通 3188659
什么是DOI,文献DOI怎么找? 1762741
邀请新用户注册赠送积分活动 853142
科研通“疑难数据库(出版商)”最低求助积分说明 793716