Improving the Hit Rates of Virtual Screening by Active Learning from Bioactivity Feedback

计算机科学 虚拟筛选 人机交互 数据科学 生物信息学 药物发现 生物
作者
Xun Deng,Junlong Liu,Zhike Liu,Jiansheng Wu,Fuli Feng,Jieping Ye,Zheng Wang
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01618
摘要

Virtual screening has been widely used to identify potential hit candidates that can bind to the target protein in drug discovery. Contemporary screening methods typically rely on oversimplified scoring functions, frequently yielding one-digit hit rates (or even zero) among top-ranked candidates. The substantial cost of laboratory validation further constrains the exploration of candidate molecules. We find that test-time prediction refinement is almost blank in this area, which means bioactivity feedback in the wet-lab experiments is neglected. Here, we introduce an Active Learning from Bioactivity Feedback (ALBF) framework to enhance the weak hit rate of current virtual screening methods. ALBF spends the budget of wet-lab experiments iteratively and leverages the target-specific bioactivity insights from current wet-lab tests to refine the score results (i.e., rankings). Our framework consists of two components: a novel query strategy that considers the evaluation quality and its overall influence on other top-scored molecules; and an efficient score optimization strategy that propagates the bioactivity feedback to structurally similar molecules. We evaluated ALBF on diverse subsets of the well-known DUD-E and LIT-PCBA benchmarks. Our active learning protocol averagely enhances top-100 hit rates by 60% and 30% on DUD-E and LIT-PCBA with 50 to 200 bioactivity queries on the selected molecules that are deployed in ten rounds. The consistently superior performance demonstrates ALBF's potential to enhance both the accuracy and cost-effectiveness of active learning-based laboratory testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助alice采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得150
3秒前
Micro_A应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
Micro_A应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Micro_A应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
6秒前
麻师长完成签到,获得积分10
7秒前
10秒前
12秒前
djdh完成签到 ,获得积分10
12秒前
Orange应助卡他采纳,获得10
12秒前
李向阳发布了新的文献求助10
15秒前
linst5E完成签到,获得积分10
16秒前
Akim应助ZW采纳,获得10
23秒前
落寞的八宝粥完成签到,获得积分10
24秒前
完美世界应助rrrrlc采纳,获得10
30秒前
zds233完成签到,获得积分10
32秒前
福尔摩环完成签到 ,获得积分10
33秒前
正直的广缘完成签到 ,获得积分10
33秒前
粱三问完成签到 ,获得积分10
34秒前
kate完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776905
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209713
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984