亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent Traffic Monitoring with Distributed Acoustic Sensing

分布式声传感 声传感器 地质学 计算机科学 环境科学 声学 电信 物理 光纤传感器 光纤
作者
Dongzi Xie,Xinming Wu,Zhixiang Guo,Heting Hong,Baoshan Wang,Yingjiao Rong
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220240298
摘要

Abstract Distributed acoustic sensing (DAS) is promising for traffic monitoring, but its extensive data and sensitivity to vibrations, causing noise, pose computational challenges. To address this, we propose a two-step deep learning workflow with high efficiency and noise immunity for DAS-based traffic monitoring, focusing on instance vehicle trajectory segmentation and velocity estimation. Our approach begins by generating a diverse synthetic DAS dataset with labeled vehicle signals, tackling the issue of missing training labels in this field. This dataset is used to train a convolutional neural network (CNN) to detect linear vehicle trajectories from the noisy DAS data in the time–space domain. However, due to significant noise, these trajectories are often fragmented and incomplete. To enhance accuracy, we introduce a second step involving the Hough transform. This converts detected linear features into point-like energy clusters in the Hough domain. Another CNN is then employed to focus on these energies, identifying the most significant points. The inverse Hough transform is applied to these points to reconstruct complete, distinct, and noise-free linear vehicle trajectories in the time–space domain. The Hough transform plays a crucial role by enforcing a local linearity constraint on the trajectories, enhancing continuity and noise immunity, and facilitating the separation of individual trajectories and estimation of vehicle velocities (indicated by trajectory slopes in the Hough domain). Our method has shown effectiveness in real-world datasets, proving its value in real-time processing of DAS data and applicability in similar traffic monitoring scenarios. All related codes and data are available in the Data and Resources section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
35秒前
无辜的猎豹完成签到 ,获得积分10
39秒前
39秒前
Jaho完成签到,获得积分10
44秒前
DrFoo发布了新的文献求助10
46秒前
KINGAZX完成签到 ,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
DrFoo完成签到,获得积分10
1分钟前
2分钟前
2分钟前
远晴完成签到 ,获得积分10
2分钟前
zxf发布了新的文献求助10
2分钟前
所所应助cc采纳,获得10
3分钟前
3分钟前
cc发布了新的文献求助10
3分钟前
伏城完成签到 ,获得积分10
3分钟前
4分钟前
情怀应助未来可期采纳,获得10
4分钟前
juan完成签到 ,获得积分10
4分钟前
4分钟前
未来可期发布了新的文献求助10
4分钟前
5分钟前
未来可期完成签到,获得积分10
5分钟前
zxf发布了新的文献求助10
5分钟前
zxf完成签到,获得积分10
5分钟前
chenzh86完成签到,获得积分10
5分钟前
7分钟前
聪慧的娜完成签到 ,获得积分10
7分钟前
神勇朝雪完成签到,获得积分10
8分钟前
四月完成签到,获得积分10
8分钟前
Qian完成签到 ,获得积分10
8分钟前
希望天下0贩的0应助twk采纳,获得10
9分钟前
10分钟前
记仇小猫发布了新的文献求助10
10分钟前
萝卜猪完成签到,获得积分10
10分钟前
StonesKing完成签到,获得积分10
10分钟前
11分钟前
托尔斯泰发布了新的文献求助10
11分钟前
托尔斯泰完成签到,获得积分10
11分钟前
12分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784797
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244216
捐赠科研通 3045404
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508