Intelligent Traffic Monitoring with Distributed Acoustic Sensing

分布式声传感 声传感器 地质学 计算机科学 环境科学 声学 电信 物理 光纤传感器 光纤
作者
Dongzi Xie,Xinming Wu,Zhixiang Guo,Heting Hong,Baoshan Wang,Yingjiao Rong
出处
期刊:Seismological Research Letters [Seismological Society of America]
被引量:2
标识
DOI:10.1785/0220240298
摘要

Abstract Distributed acoustic sensing (DAS) is promising for traffic monitoring, but its extensive data and sensitivity to vibrations, causing noise, pose computational challenges. To address this, we propose a two-step deep learning workflow with high efficiency and noise immunity for DAS-based traffic monitoring, focusing on instance vehicle trajectory segmentation and velocity estimation. Our approach begins by generating a diverse synthetic DAS dataset with labeled vehicle signals, tackling the issue of missing training labels in this field. This dataset is used to train a convolutional neural network (CNN) to detect linear vehicle trajectories from the noisy DAS data in the time–space domain. However, due to significant noise, these trajectories are often fragmented and incomplete. To enhance accuracy, we introduce a second step involving the Hough transform. This converts detected linear features into point-like energy clusters in the Hough domain. Another CNN is then employed to focus on these energies, identifying the most significant points. The inverse Hough transform is applied to these points to reconstruct complete, distinct, and noise-free linear vehicle trajectories in the time–space domain. The Hough transform plays a crucial role by enforcing a local linearity constraint on the trajectories, enhancing continuity and noise immunity, and facilitating the separation of individual trajectories and estimation of vehicle velocities (indicated by trajectory slopes in the Hough domain). Our method has shown effectiveness in real-world datasets, proving its value in real-time processing of DAS data and applicability in similar traffic monitoring scenarios. All related codes and data are available in the Data and Resources section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助my采纳,获得10
1秒前
2秒前
COSMAO应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
xzy998应助科研通管家采纳,获得10
3秒前
3秒前
浅斟低唱发布了新的文献求助10
4秒前
4秒前
better完成签到,获得积分10
5秒前
叶艳完成签到,获得积分20
5秒前
5秒前
6秒前
酷波er应助火土采纳,获得10
6秒前
超帅千万发布了新的文献求助10
7秒前
9秒前
成就的绯发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
wyk完成签到,获得积分10
13秒前
13秒前
明哥发布了新的文献求助10
14秒前
晚棠发布了新的文献求助10
15秒前
达乐发布了新的文献求助10
18秒前
my发布了新的文献求助10
18秒前
浅斟低唱发布了新的文献求助10
18秒前
22秒前
77完成签到,获得积分10
24秒前
25秒前
Zjjj0812发布了新的文献求助10
26秒前
28秒前
猪猪hero应助Anna采纳,获得10
29秒前
ladysansan完成签到,获得积分10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171129
求助须知:如何正确求助?哪些是违规求助? 3706599
关于积分的说明 11695134
捐赠科研通 3392446
什么是DOI,文献DOI怎么找? 1860702
邀请新用户注册赠送积分活动 920531
科研通“疑难数据库(出版商)”最低求助积分说明 832740