Intelligent Traffic Monitoring with Distributed Acoustic Sensing

分布式声传感 声传感器 地质学 计算机科学 环境科学 声学 电信 物理 光纤传感器 光纤
作者
Dongzi Xie,Xinming Wu,Zhixiang Guo,Heting Hong,Baoshan Wang,Yingjiao Rong
出处
期刊:Seismological Research Letters [Seismological Society of America]
被引量:2
标识
DOI:10.1785/0220240298
摘要

Abstract Distributed acoustic sensing (DAS) is promising for traffic monitoring, but its extensive data and sensitivity to vibrations, causing noise, pose computational challenges. To address this, we propose a two-step deep learning workflow with high efficiency and noise immunity for DAS-based traffic monitoring, focusing on instance vehicle trajectory segmentation and velocity estimation. Our approach begins by generating a diverse synthetic DAS dataset with labeled vehicle signals, tackling the issue of missing training labels in this field. This dataset is used to train a convolutional neural network (CNN) to detect linear vehicle trajectories from the noisy DAS data in the time–space domain. However, due to significant noise, these trajectories are often fragmented and incomplete. To enhance accuracy, we introduce a second step involving the Hough transform. This converts detected linear features into point-like energy clusters in the Hough domain. Another CNN is then employed to focus on these energies, identifying the most significant points. The inverse Hough transform is applied to these points to reconstruct complete, distinct, and noise-free linear vehicle trajectories in the time–space domain. The Hough transform plays a crucial role by enforcing a local linearity constraint on the trajectories, enhancing continuity and noise immunity, and facilitating the separation of individual trajectories and estimation of vehicle velocities (indicated by trajectory slopes in the Hough domain). Our method has shown effectiveness in real-world datasets, proving its value in real-time processing of DAS data and applicability in similar traffic monitoring scenarios. All related codes and data are available in the Data and Resources section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁惜梦发布了新的文献求助10
刚刚
可爱的函函应助江洋大盗采纳,获得10
1秒前
科研通AI2S应助张文静采纳,获得10
2秒前
wang完成签到,获得积分10
5秒前
5秒前
酷酷元风完成签到,获得积分10
5秒前
拉长的大山完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
欣阳1021发布了新的文献求助10
10秒前
GONGLI完成签到 ,获得积分10
10秒前
Dceer完成签到,获得积分10
11秒前
江洋大盗发布了新的文献求助10
12秒前
嗦了蜜发布了新的文献求助10
14秒前
15秒前
杏子发布了新的文献求助10
15秒前
江洋大盗完成签到,获得积分10
17秒前
19秒前
WHTTTTT完成签到,获得积分10
20秒前
20秒前
乐天完成签到,获得积分10
23秒前
24秒前
Chanyl发布了新的文献求助10
25秒前
酷波er应助初一采纳,获得10
25秒前
ysw发布了新的文献求助20
25秒前
110完成签到,获得积分10
25秒前
25秒前
杆杆完成签到 ,获得积分10
28秒前
110发布了新的文献求助10
28秒前
脑洞疼应助Chanyl采纳,获得10
29秒前
CodeCraft应助gr采纳,获得20
30秒前
30秒前
李爱国应助dd采纳,获得10
31秒前
量子星尘发布了新的文献求助10
33秒前
浮游应助嗦了蜜采纳,获得10
34秒前
Freya完成签到 ,获得积分10
35秒前
37秒前
37秒前
要减肥安珊应助文件撤销了驳回
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Nuclear Fuel Behaviour under RIA Conditions 500
Life: The Science of Biology Digital Update 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4686823
求助须知:如何正确求助?哪些是违规求助? 4060402
关于积分的说明 12553631
捐赠科研通 3757424
什么是DOI,文献DOI怎么找? 2075095
邀请新用户注册赠送积分活动 1103955
科研通“疑难数据库(出版商)”最低求助积分说明 983057