Unraveling Structural Carboxyl Defects in g‐C3N4 for Improved Photocatalytic H2 Evolution via Alternating Hydrogen‐Oxygen‐Plasma Treatment

光催化 氧气 材料科学 催化作用 过氧化氢 共价键 密度泛函理论 聚合物 光化学 化学 计算化学 有机化学 复合材料
作者
Xijiang Chang,Daqian Wang,Shuchang Xu,Zhihao Zhang,Ziying Xiong,Ying Guo,Shifei Kang
出处
期刊:Advanced sustainable systems [Wiley]
卷期号:6 (10) 被引量:4
标识
DOI:10.1002/adsu.202200207
摘要

Abstract Structural defect‐endowed photocatalysts are being increasingly recognized due to the enhanced catalytic activity of multiple defect sites (e.g., vacancies or functional groups). However, because of the excessive destruction effect of conventional chemical oxidation methods toward carboxyl defects engineering, the mechanism is still unclear and practice is rare in developing high‐quality structural carboxyl defect‐involved g‐C 3 N 4 . Herein, an alternating hydrogen‐oxygen‐plasma treatment is proposed to endow the g‐C 3 N 4 with enriched vacancy defect sites for the subsequent immobilization of carboxyl groups, thus overcoming the problem of lacking of covalent binding sites in g‐C 3 N 4 in developing carboxyl defective g‐C 3 N 4 photocatalysts. The alternating hydrogen‐oxygen‐plasma treatment does not only influence the defect structure of g‐C 3 N 4 , but also changes its morphology, optimizes the electronic distribution, and increases the separation efficiency of photogenerated electrons and holes, thereby increasing photocatalytic H 2 evolution by 7.91 times. Density functional calculations and electrochemical characterization suggest that the carboxyl defects generated by the fast H 2 ‐O 2 plasma modification lead to a local asymmetric electron environment, which enhances carrier separation capability and significantly improves H 2 generation activity. This study provides a new insight into the rational design and fabrication of defect‐containing photocatalysts, carbon materials, and polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
脑壳疼丶完成签到,获得积分10
3秒前
3秒前
爆米花应助andrele采纳,获得10
3秒前
4秒前
zhaozi发布了新的文献求助10
4秒前
咚咚完成签到 ,获得积分10
4秒前
隐形曼青应助哈哈采纳,获得30
4秒前
5秒前
共享精神应助明理半山采纳,获得10
5秒前
nilu完成签到,获得积分10
6秒前
6秒前
神明发布了新的文献求助10
7秒前
爆米花应助杭啊采纳,获得10
7秒前
丘比特应助高大威猛小帅采纳,获得10
9秒前
Hello应助淡定白易采纳,获得10
10秒前
12秒前
12秒前
13秒前
15秒前
星辰大海应助读书的时候采纳,获得10
15秒前
超级困蛋发布了新的文献求助10
15秒前
16秒前
槑塞呆呆完成签到 ,获得积分10
16秒前
复杂豆芽完成签到 ,获得积分10
16秒前
17秒前
17秒前
JamesPei应助cy0824采纳,获得10
18秒前
yhy发布了新的文献求助10
19秒前
明理半山发布了新的文献求助10
19秒前
Scott发布了新的文献求助10
20秒前
21秒前
完美世界应助嘉嘉采纳,获得10
21秒前
22秒前
randi完成签到 ,获得积分10
23秒前
阿关发布了新的文献求助10
24秒前
所所应助橘子采纳,获得10
25秒前
TCXXS完成签到 ,获得积分10
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098012
求助须知:如何正确求助?哪些是违规求助? 3635781
关于积分的说明 11524269
捐赠科研通 3345818
什么是DOI,文献DOI怎么找? 1838993
邀请新用户注册赠送积分活动 906453
科研通“疑难数据库(出版商)”最低求助积分说明 823642