Defect identification for oil and gas pipeline safety based on autonomous deep learning network

计算机科学 管道(软件) 鉴定(生物学) 安全监测 人工智能 联营 管道运输 传感器融合 实时计算 数据挖掘 环境科学 程序设计语言 植物 生物 环境工程 生物技术
作者
Min Zhang,Yanbao Guo,Qiuju Xie,Yuansheng Zhang,Deguo Wang,Jinzhong Chen
出处
期刊:Computer Communications [Elsevier]
卷期号:195: 14-26 被引量:29
标识
DOI:10.1016/j.comcom.2022.08.001
摘要

The safety detection for oil and gas pipelines is more and more worthy of attention. It not only promotes the development of pipeline safety work, but also provides a guarantee for pipeline safety decision management. However, there are more and more safety problems in pipeline operation, causing immeasurable consequences. Therefore, the pipeline safety detection technology needs to be further improved. In this paper, a two-axis magnetic flux leakage detection device is used for safety detection of an oil and gas pipeline, and the detection results are analyzed and studied. 77 sets of detection data are collected through the detection device. Due to the harsh environment of the oil and gas station, the data is severely disturbed, so the data is filtered firstly. The filtered data can better reflect the safety status information of the pipeline. Secondly, In order to avoid the random error of single-axis data, a two-dimensional data fusion method is proposed. The fusion data improves the accuracy of recognition of pipeline failure features. Thirdly, autonomous deep learning recognition algorithm is used to classify and recognize pipeline failure features. The network in this algorithm includes convolutional layers, pooling layers and fully connected layers. Through multiple simulation calculations, the number of network layers has been optimized. Finally, experiments are carried out based on the data collected on-site. The experiment results show that the training accuracy is 99.19%, and the testing accuracy is 97.38%. In short, the entire pipeline safety inspection data processing algorithm reliably identifies the types of pipeline failure defects. And it will provide a basis for the safe construction of pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cyndi完成签到,获得积分10
1秒前
张张橘完成签到,获得积分10
1秒前
陈远远完成签到,获得积分10
2秒前
牙牙完成签到,获得积分10
2秒前
无花果应助ThoseRangers0624采纳,获得30
2秒前
PYL233发布了新的文献求助10
2秒前
2秒前
Akim应助务实的绮山采纳,获得10
3秒前
3秒前
3秒前
正月初九完成签到,获得积分10
4秒前
传奇3应助sendou采纳,获得10
4秒前
4秒前
hautzhl发布了新的文献求助10
5秒前
5秒前
Owen应助李彦采纳,获得10
5秒前
6秒前
Xiaoguo发布了新的文献求助10
7秒前
month发布了新的文献求助10
7秒前
大玲发布了新的文献求助10
7秒前
unfraid发布了新的文献求助10
7秒前
8秒前
8秒前
香蕉觅云应助称心曼安采纳,获得10
8秒前
8秒前
蒋谷兰发布了新的文献求助50
9秒前
沉静晓丝完成签到,获得积分10
9秒前
MFNM发布了新的文献求助10
10秒前
11秒前
dingbo发布了新的文献求助10
12秒前
12秒前
bb完成签到,获得积分10
12秒前
沉静晓丝发布了新的文献求助10
13秒前
13秒前
微笑的画笔完成签到,获得积分10
13秒前
vfi完成签到,获得积分10
14秒前
爆米花应助优雅的化蛹采纳,获得10
14秒前
太阳当下完成签到,获得积分10
14秒前
小心胖虎发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298080
求助须知:如何正确求助?哪些是违规求助? 4446756
关于积分的说明 13840225
捐赠科研通 4331934
什么是DOI,文献DOI怎么找? 2377972
邀请新用户注册赠送积分活动 1373239
关于科研通互助平台的介绍 1338833