亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-strategy self-learning particle swarm optimization algorithm based on reinforcement learning

强化学习 计算机科学 水准点(测量) 数学优化 粒子群优化 增强学习 趋同(经济学) 人工智能 集合(抽象数据类型) 算法 数学 大地测量学 经济增长 经济 程序设计语言 地理
作者
Xiaoding Meng,Hecheng Li,Anshan Chen
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:20 (5): 8498-8530 被引量:6
标识
DOI:10.3934/mbe.2023373
摘要

The trade-off between exploitation and exploration is a dilemma inherent to particle swarm optimization (PSO) algorithms. Therefore, a growing body of PSO variants is devoted to solving the balance between the two. Among them, the method of self-adaptive multi-strategy selection plays a crucial role in improving the performance of PSO algorithms but has yet to be well exploited. In this research, with the aid of the reinforcement learning technique to guide the generation of offspring, a novel self-adaptive multi-strategy selection mechanism is designed, and then a multi-strategy self-learning PSO algorithm based on reinforcement learning (MPSORL) is proposed. First, the fitness value of particles is regarded as a set of states that are divided into several state subsets non-uniformly. Second, the ε-greedy strategy is employed to select the optimal strategy for each particle. The personal best particle and the global best particle are then updated after executing the strategy. Subsequently, the next state is determined. Thus, the value of the Q-table, as a scheme adopted in self-learning, is reshaped by the reward value, the action and the state in a non-stationary environment. Finally, the proposed algorithm is compared with other state-of-the-art algorithms on two well-known benchmark suites and a real-world problem. Extensive experiments indicate that MPSORL has better performance in terms of accuracy, convergence speed and non-parametric tests in most cases. The multi-strategy selection mechanism presented in the manuscript is effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
charm完成签到,获得积分10
5秒前
桐桐应助lyc采纳,获得30
5秒前
不高兴发布了新的文献求助10
8秒前
8秒前
DrJiang发布了新的文献求助10
11秒前
姜sir完成签到 ,获得积分10
14秒前
不高兴完成签到,获得积分10
16秒前
17秒前
21秒前
cjh发布了新的文献求助10
24秒前
田様应助DrJiang采纳,获得10
26秒前
Film发布了新的文献求助10
28秒前
zzzz完成签到 ,获得积分10
30秒前
cjh完成签到,获得积分20
44秒前
48秒前
了凡完成签到 ,获得积分10
58秒前
严冰蝶完成签到 ,获得积分10
1分钟前
椰子完成签到,获得积分10
1分钟前
1分钟前
椰子发布了新的文献求助20
1分钟前
1分钟前
动漫大师发布了新的文献求助10
1分钟前
1分钟前
JamesPei应助guoze采纳,获得10
1分钟前
lemontrree发布了新的文献求助10
1分钟前
1分钟前
慕青应助guoze采纳,获得10
1分钟前
小蘑菇应助lemontrree采纳,获得10
1分钟前
fff发布了新的文献求助10
1分钟前
恒温失效发布了新的文献求助10
1分钟前
1分钟前
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
1分钟前
科研小白完成签到,获得积分10
1分钟前
活力的冷雪完成签到 ,获得积分10
1分钟前
asd1576562308完成签到 ,获得积分10
2分钟前
白樱恋曲完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824880
求助须知:如何正确求助?哪些是违规求助? 3367298
关于积分的说明 10445026
捐赠科研通 3086572
什么是DOI,文献DOI怎么找? 1698122
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769865