Pipeline leak detection method based on acoustic-pressure information fusion

希尔伯特-黄变换 信号(编程语言) 泄漏 降噪 计算机科学 恒虚警率 噪音(视频) 人工智能 小波 管道(软件) 传感器融合 模式识别(心理学) 假警报 工程类 语音识别 计算机视觉 滤波器(信号处理) 图像(数学) 程序设计语言 环境工程
作者
WeiLiang Wang,Yu Gao
出处
期刊:Measurement [Elsevier BV]
卷期号:212: 112691-112691 被引量:25
标识
DOI:10.1016/j.measurement.2023.112691
摘要

Pipeline transportation is one of the essential transportation means, and accurate detection of pipeline leaks is of great significance for energy safety and environmental protection. However, most of the existing leak detection methods are based on a single type of signal, which generates a high false alarm rate in complex operating environments. Therefore, this paper proposes a pipeline leak detection method based on acoustic-pressure (A-P) information fusion and a noise reduction algorithm based on dual Pearson thresholds-ensemble empirical mode decomposition (DP-EEMD). Firstly, the original signal is decomposed using the EEMD algorithm. The signal is reconstructed by screening the practical components according to the similarity coefficients between the intrinsic mode functions (IMFs) and the original double-ended signals. Secondly, information fusion is performed at the data level between the acoustic signal and the pressure signal to form the fused signal. Finally, a one-dimensional convolutional neural network is established to extract the relevant features of the acoustic-pressure fusion signal to diagnose the pipeline leakage. The experimental results show that the classification accuracy of the leak detection method proposed in this paper reaches 98.3%, which is higher than that of the 1D-CNN network and BP network using a single type of signal as input. Meanwhile, the noise reduction effect of the DP-EEMD algorithm is also better than the wavelet noise reduction method and the standard EEMD noise reduction algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haohao学习完成签到 ,获得积分10
1秒前
多啦2642完成签到,获得积分10
1秒前
科研通AI5应助称心千凝采纳,获得10
2秒前
子小孙发布了新的文献求助10
2秒前
wly发布了新的文献求助10
3秒前
Tangtang561o发布了新的文献求助30
3秒前
4秒前
期待未来的自己完成签到,获得积分10
4秒前
丘比特应助曾经天德采纳,获得30
5秒前
missinged完成签到,获得积分10
6秒前
安静凡旋发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助achenghn采纳,获得10
6秒前
7秒前
Hello完成签到,获得积分10
7秒前
8秒前
bkagyin应助cc采纳,获得10
8秒前
9秒前
9秒前
9秒前
隐形曼青应助子小孙采纳,获得10
10秒前
11秒前
daguan完成签到,获得积分10
11秒前
Son4904完成签到,获得积分10
11秒前
Owen应助安静凡旋采纳,获得10
11秒前
11秒前
Amber完成签到,获得积分10
12秒前
我想爱科研完成签到,获得积分10
12秒前
张真狗发布了新的文献求助10
12秒前
Anna发布了新的文献求助10
12秒前
fjx发布了新的文献求助10
13秒前
Aoren完成签到,获得积分10
13秒前
whisper完成签到,获得积分10
13秒前
情怀应助缥缈老九采纳,获得10
13秒前
xiaolan完成签到,获得积分10
14秒前
ALDXL发布了新的文献求助10
14秒前
甜美冥茗发布了新的文献求助60
14秒前
田様应助棠梨子采纳,获得10
14秒前
dyfsj发布了新的文献求助10
14秒前
ezekiet完成签到 ,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793494
求助须知:如何正确求助?哪些是违规求助? 3338382
关于积分的说明 10289505
捐赠科研通 3054903
什么是DOI,文献DOI怎么找? 1676204
邀请新用户注册赠送积分活动 804239
科研通“疑难数据库(出版商)”最低求助积分说明 761789