Toward Trustworthy Artificial Intelligence (TAI) in the Context of Explainability and Robustness

可信赖性 计算机科学 更安全的 稳健性(进化) 人工智能 数据科学 人工智能应用 桥接(联网) 计算机安全 生物化学 化学 基因
作者
Bhanu Chander,Chinju John,Lekha Warrier,G. Kumaravelan
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
被引量:12
标识
DOI:10.1145/3675392
摘要

From the innovation, Artificial Intelligence (AI) materialized as one of the noticeable research areas in various technologies and has almost expanded into every aspect of modern human life. However, nowadays, the development of AI is unpredictable with the stated values of those developing them; hence, the risk of misbehaving AI increases continuously. Therefore, there are uncertainties about indorsing that the development and deploying AI are favorable and not unfavorable to humankind. In addition, AI holds a black-box pattern, which results in a lack of understanding of how systems can work based on the raised concerns. From the above discussion, trustworthy AI is vital for the extensive adoption of AI in many applications, with strong attention to humankind and the need to focus on AI systems developing into the system outline at the time of system design. In this survey, we discuss compound materials on trustworthy AI and present state-of-the-art of trustworthy AI technologies, revealing new perspectives, bridging knowledge gaps, and paving the way for potential advances of robustness, and explainability rules which play a proactive role in designing AI systems. Systems that are reliable and secure and mimic human behaviour significantly impact the technological AI ecosystem. We provided various contemporary technologies to build explainability and robustness for AI-based solutions, so AI works safer and more trustworthy. Finally, we conclude our survey paper with high-end opportunities, challenges, and future research directions for trustworthy AI to investigate in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助时尚初南采纳,获得10
1秒前
xiaohan发布了新的文献求助10
2秒前
在水一方应助忧郁芹菜采纳,获得10
3秒前
xunxunmimi应助hbc采纳,获得30
3秒前
gy完成签到,获得积分10
4秒前
4秒前
传奇3应助务实寒天采纳,获得10
8秒前
xiaohan完成签到,获得积分10
9秒前
9秒前
笑柳发布了新的文献求助10
9秒前
wanci应助xiaoliu采纳,获得10
11秒前
优美电脑发布了新的文献求助10
12秒前
一样的seal完成签到,获得积分10
13秒前
一只小猪包完成签到,获得积分10
14秒前
14秒前
别摆烂了发布了新的文献求助10
15秒前
YJ888发布了新的文献求助30
16秒前
王小乐完成签到 ,获得积分10
17秒前
17秒前
18秒前
20秒前
包容山灵发布了新的文献求助30
21秒前
21秒前
xiaoliu发布了新的文献求助10
21秒前
情怀应助Dc采纳,获得10
22秒前
托妞完成签到,获得积分10
24秒前
优美电脑完成签到,获得积分10
25秒前
妲己在此发布了新的文献求助10
25秒前
桔梗完成签到,获得积分10
25秒前
SciGPT应助红烧排骨仔采纳,获得10
27秒前
FashionBoy应助YJ888采纳,获得10
28秒前
29秒前
orixero应助呆萌的觅松采纳,获得10
29秒前
29秒前
33秒前
33秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
33秒前
wyj发布了新的文献求助10
34秒前
青春奇谈发布了新的文献求助10
35秒前
36秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839862
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521407
捐赠科研通 3101561
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822207
科研通“疑难数据库(出版商)”最低求助积分说明 773208