How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo?

环境科学 反照率(炼金术) 土地覆盖 牧场 土地利用 自然地理学 气候学 地理 气象学 农林复合经营 生态学 地质学 艺术 表演艺术 生物 艺术史
作者
Saeid Varamesh,Sohrab Mohtaram Anbaran,Bagher Shirmohammadi,Nadhir Al‐Ansari,Saeid Shabani,Abolfazl Jaafari
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:14 (24): 16963-16963
标识
DOI:10.3390/su142416963
摘要

Land surface temperature (LST) and land surface albedo (LSA) are the two key regional and global climate-controlling parameters; assessing their behavior would likely result in a better understanding of the appropriate adaptation strategies to mitigate the consequences of climate change. This study was conducted to explore the spatiotemporal variability in LST and LSA across different land use/cover (LULC) classes in northwest Iran. To do so, we first applied an object-oriented algorithm to the 10 m resolution Sentinel-2 images of summer 2019 to generate a LULC map of a 3284 km2 region in northwest Iran. Then, we computed the LST and LSA of each LULC class using the SEBAL algorithm, which was applied to the Landsat-8 images from the summer of 2019 and winter of 2020. The results showed that during the summer season, the maximum and minimum LSA values were associated with barren land (0.33) and water bodies (0.11), respectively; during the winter season, the maximum LSA value was observed for farmland and snow cover, and the minimum value was observed in forest areas (0.21). The maximum and minimum LST values in summer were acquired from rangeland (37 °C) and water bodies (24 °C), respectively; the maximum and minimum values of winter values were detected in forests (4.14 °C) and snow cover (−21.36 °C), respectively. Our results revealed that barren land and residential areas, having the maximum LSA in summer, were able to reduce the heating effects to some extent. Forest areas, due to their low LSA and high LST, particularly in winter, had a greater effect on regional warming compared with other LULC classes. Our study suggests that forests might not always mitigate the effects of global warming as much as we expect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞草完成签到 ,获得积分10
2秒前
柯彦完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
争气完成签到 ,获得积分10
7秒前
大猪完成签到 ,获得积分10
13秒前
ED应助jiajia采纳,获得10
15秒前
15秒前
1250241652完成签到,获得积分10
17秒前
bioglia发布了新的文献求助10
18秒前
hhh完成签到 ,获得积分10
23秒前
吉祥高趙完成签到 ,获得积分10
29秒前
精明的甜瓜应助jiajia采纳,获得10
29秒前
ylky完成签到 ,获得积分10
32秒前
肉丸完成签到 ,获得积分10
36秒前
AnyYuan完成签到 ,获得积分10
36秒前
42秒前
量子星尘发布了新的文献求助30
46秒前
xgx984完成签到,获得积分10
46秒前
zhangliangfu完成签到 ,获得积分10
47秒前
momi完成签到 ,获得积分10
47秒前
浮云完成签到 ,获得积分10
49秒前
Tina完成签到 ,获得积分10
1分钟前
bioglia完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
bkagyin应助一个小胖子采纳,获得10
1分钟前
hu完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kanong完成签到,获得积分0
1分钟前
zyb完成签到 ,获得积分10
1分钟前
轻松诗霜完成签到 ,获得积分10
1分钟前
1分钟前
坚定的凝云完成签到 ,获得积分10
1分钟前
可飞完成签到,获得积分10
1分钟前
1分钟前
典雅三颜完成签到 ,获得积分10
2分钟前
请叫我风吹麦浪应助HM采纳,获得10
2分钟前
水星完成签到 ,获得积分0
2分钟前
wanci应助一个小胖子采纳,获得10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4021956
求助须知:如何正确求助?哪些是违规求助? 3562060
关于积分的说明 11336696
捐赠科研通 3293870
什么是DOI,文献DOI怎么找? 1814449
邀请新用户注册赠送积分活动 889228
科研通“疑难数据库(出版商)”最低求助积分说明 812838