卡尔曼滤波器
控制理论(社会学)
相(物质)
算法
数学
线性相位
高斯分布
计算机科学
下部结构
估计理论
扩展卡尔曼滤波器
滤波器(信号处理)
工程类
统计
人工智能
物理
计算机视觉
结构工程
量子力学
控制(管理)
作者
Zahraa Stuart,Yousef El-Laham,Mónica F. Bugallo
标识
DOI:10.1109/lsp.2021.3087464
摘要
In this paper we propose a powerful frequency, phase angle, and amplitude estimation solution for an unbalanced three-phase power system based on multiple model adaptive estimation. The proposed model utilizes the existence of a conditionally linear and Gaussian substructure in the power system states by marginalizing out the frequency component. This substructure can be effectively tracked by a bank of Kalman filters where each filter employs a different angular frequency value. Compared to other Bayesian filtering schemes for estimation in three-phase power systems, the proposed model reformulation is simpler, more robust, and more accurate as validated with numerical simulations on synthetic data.
科研通智能强力驱动
Strongly Powered by AbleSci AI