计算机科学
跟踪(教育)
贝叶斯概率
聚类分析
滤波器(信号处理)
颗粒过滤器
星团(航天器)
集合(抽象数据类型)
人工智能
贝叶斯定理
力矩(物理)
模式识别(心理学)
算法
数据挖掘
计算机视觉
物理
经典力学
心理学
教育学
程序设计语言
摘要
Cluster tracking is the problem of detecting and tracking clustered formations of large numbers of targets, without necessarily being obligated to track each and every individual target. We address this problem by generalizing to the dynamic case a static Bayesian finite-mixture data-clustering approach due to P. Cheeseman. After summarizing Cheeseman's approach, we show that it implicitly draws on random set theory. Making this connection explicit allows us to incorporate it into a multitarget recursive Bayes filter, thereby leading to a rigorous Bayesian foundation for finite-mixture cluster tracking. A computational approach is proposed, based on an approximate, multitarget first-order moment filter ("cluster PHD" filter).
科研通智能强力驱动
Strongly Powered by AbleSci AI