概率逻辑
代表(政治)
过程(计算)
软传感器
潜变量
变量(数学)
数据挖掘
特征(语言学)
计算机科学
潜变量模型
机器学习
质量(理念)
人工智能
数学
模式识别(心理学)
算法
数学分析
语言学
哲学
认识论
政治
政治学
法学
操作系统
作者
Chao Shang,Biao Huang,Fan Yang,Dexian Huang
出处
期刊:Aiche Journal
[Wiley]
日期:2015-07-02
卷期号:61 (12): 4126-4139
被引量:132
摘要
Latent variable (LV) models provide explicit representations of underlying driving forces of process variations and retain the dominant information of process data. In this study, slow features (SFs) as temporally correlated LVs are derived using probabilistic SF analysis. SFs evolving in a state‐space form effectively represent nominal variations of processes, some of which are potentially correlated to quality variables and hence help improving the prediction performance of soft sensors. An efficient expectation maximum algorithm is proposed to estimate parameters of the probabilistic model, which turns out to be suitable for analyzing massive process data. Two criteria are also proposed to select quality‐relevant SFs. The validity and advantages of the proposed method are demonstrated via two case studies. © 2015 American Institute of Chemical Engineers AIChE J , 61: 4126–4139, 2015
科研通智能强力驱动
Strongly Powered by AbleSci AI