Integrative analyses of genes associated with idiopathic pulmonary fibrosis

特发性肺纤维化 小桶 生物 微阵列 基因 微阵列分析技术 计算生物学 信号转导 表型 医学 基因表达 生物信息学 遗传学 基因本体论 内科学
作者
Huimei Wang,Qiqi Xie,Wen Ou‐Yang,Mingwei Zhang
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:120 (5): 8648-8660 被引量:24
标识
DOI:10.1002/jcb.28153
摘要

Idiopathic pulmonary fibrosis (IPF), characterized by irreversible scarring and progressive destruction of the lung tissue, is one of the most common types of idiopathic interstitial pneumonia worldwide. However, there are no reliable candidates for curative therapies. Hence, elucidation of the mechanisms of IPF genesis and exploration of potential biomarkers and prognostic indicators are essential for accurate diagnosis and treatment of IPF. Recently, efficient microarray and bioinformatics analyses have promoted an understanding of the molecular mechanisms of disease occurrence and development, which is necessary to explore genetic alternations and identify potential diagnostic biomarkers. However, high false-positive rates results have been observed based on single microarray datasets. In the current study, we performed a comprehensive analysis of the differential expression, biological functions, and interactions of IPF-related genes. Three publicly available microarray datasets including 54 IPF samples and 34 normal samples were integrated by performing gene set enrichment analysis and analyzing differentially expressed genes (DEGs). Our results identified 350 DEGs genetically associated with IPF. Gene ontology analyses revealed that the changes in the modules were mostly enriched in the positive regulation of smooth muscle cell proliferation, positive regulation of inflammatory responses, and the extracellular space. Kyoto encyclopedia of genes and genomes enrichment analysis of DEGs revealed that IPF involves the TNF signaling pathway, NOD-like receptor signaling pathway, and PPAR signaling pathway. To identify key genes related to IPF in the protein-protein interaction network, 20 hub genes were screened out with highest scores. Our results provided a framework for developing new pathological molecular networks related to specific diseases in silico.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Giao采纳,获得10
刚刚
1秒前
1秒前
hsialy完成签到,获得积分10
1秒前
动漫大师发布了新的文献求助10
6秒前
6秒前
科研通AI5应助活力的尔蓉采纳,获得30
9秒前
非哲完成签到 ,获得积分10
9秒前
脆脆鲨鱼完成签到,获得积分10
10秒前
隐形的谷南完成签到,获得积分10
10秒前
你好完成签到 ,获得积分0
10秒前
Giao发布了新的文献求助10
12秒前
丘比特应助科研通管家采纳,获得10
14秒前
月亮完成签到 ,获得积分10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
舒心的寻琴完成签到,获得积分10
18秒前
Shaangueuropa完成签到,获得积分10
18秒前
科研通AI5应助活力的尔蓉采纳,获得10
19秒前
闵卷完成签到,获得积分10
19秒前
19秒前
怕孤独的修杰完成签到 ,获得积分10
23秒前
23秒前
席老四发布了新的文献求助10
24秒前
平淡妙松发布了新的文献求助10
25秒前
陶喆完成签到,获得积分10
29秒前
30秒前
科研通AI5应助活力的尔蓉采纳,获得10
30秒前
Robin完成签到,获得积分10
31秒前
席老四完成签到,获得积分10
31秒前
liangx完成签到 ,获得积分10
32秒前
shufessm完成签到,获得积分0
33秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401