Fast, sensitive and accurate integration of single-cell data with Harmony

生物 计算机科学 计算生物学 数据集成 数据挖掘
作者
Ilya Korsunsky,Nghia Millard,Jean Fan,Kamil Slowikowski,Fan Zhang,Kevin Wei,Yuriy Baglaenko,Michael B. Brenner,Po‐Ru Loh,Soumya Raychaudhuri
出处
期刊:Nature Methods [Springer Nature]
卷期号:16 (12): 1289-1296 被引量:8827
标识
DOI:10.1038/s41592-019-0619-0
摘要

The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony ( https://github.com/immunogenomics/harmony ), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of ~106 cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data. Harmony, for the integration of single-cell transcriptomic data, identifies broad and fine-grained populations, scales to large datasets, and can integrate sequencing- and imaging-based data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
2秒前
3秒前
Orange应助FadedTulips采纳,获得10
3秒前
爆米花应助木木采纳,获得10
3秒前
务实映之发布了新的文献求助10
4秒前
Gauss应助欢呼灵安采纳,获得30
4秒前
yangxt-iga发布了新的文献求助10
5秒前
Moislad完成签到,获得积分10
5秒前
花椒发布了新的文献求助10
5秒前
song发布了新的文献求助10
5秒前
科研通AI6应助一头小飞猪采纳,获得10
6秒前
打打应助空勒采纳,获得10
6秒前
6秒前
深情安青应助djbj2022采纳,获得20
7秒前
隐形曼青应助小哥采纳,获得30
8秒前
9秒前
10秒前
AAA完成签到,获得积分10
11秒前
arukas11aeons发布了新的文献求助30
13秒前
果果发布了新的文献求助20
13秒前
13秒前
13秒前
54不得了完成签到,获得积分10
13秒前
英俊的铭应助科研民工李采纳,获得10
13秒前
14秒前
科研通AI6应助Tao采纳,获得10
16秒前
汉堡包应助sujan采纳,获得10
16秒前
科研通AI6应助小巧小丸子采纳,获得10
17秒前
17秒前
Hello应助RO采纳,获得10
18秒前
18秒前
19秒前
李飞feifei发布了新的文献求助10
19秒前
zhuhongxia发布了新的文献求助20
19秒前
Akim应助吃鲨鱼的小虾米采纳,获得10
20秒前
20秒前
小哥发布了新的文献求助30
20秒前
20秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501474
求助须知:如何正确求助?哪些是违规求助? 4597738
关于积分的说明 14460599
捐赠科研通 4531272
什么是DOI,文献DOI怎么找? 2483232
邀请新用户注册赠送积分活动 1466779
关于科研通互助平台的介绍 1439424