亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study

医学 癌症 内窥镜检查 癌症检测 上消化道内窥镜检查 内科学 普通外科 结直肠癌 胃肠道癌
作者
Hui Luo,Guoliang Xu,Chaofeng Li,Longjun He,Linna Luo,Zixian Wang,Bingzhong Jing,Yishu Deng,Ying Jin,Li Yin,Bin Li,Wencheng Tan,Caisheng He,Sharvesh Raj Seeruttun,Qiubao Wu,Jun Huang,De-wang Huang,Bin Chen,Shao-bin Lin,Qin-ming Chen
出处
期刊:Lancet Oncology [Elsevier]
卷期号:20 (12): 1645-1654 被引量:389
标识
DOI:10.1016/s1470-2045(19)30637-0
摘要

Summary

Background

Upper gastrointestinal cancers (including oesophageal cancer and gastric cancer) are the most common cancers worldwide. Artificial intelligence platforms using deep learning algorithms have made remarkable progress in medical imaging but their application in upper gastrointestinal cancers has been limited. We aimed to develop and validate the Gastrointestinal Artificial Intelligence Diagnostic System (GRAIDS) for the diagnosis of upper gastrointestinal cancers through analysis of imaging data from clinical endoscopies.

Methods

This multicentre, case-control, diagnostic study was done in six hospitals of different tiers (ie, municipal, provincial, and national) in China. The images of consecutive participants, aged 18 years or older, who had not had a previous endoscopy were retrieved from all participating hospitals. All patients with upper gastrointestinal cancer lesions (including oesophageal cancer and gastric cancer) that were histologically proven malignancies were eligible for this study. Only images with standard white light were deemed eligible. The images from Sun Yat-sen University Cancer Center were randomly assigned (8:1:1) to the training and intrinsic verification datasets for developing GRAIDS, and the internal validation dataset for evaluating the performance of GRAIDS. Its diagnostic performance was evaluated using an internal and prospective validation set from Sun Yat-sen University Cancer Center (a national hospital) and additional external validation sets from five primary care hospitals. The performance of GRAIDS was also compared with endoscopists with three degrees of expertise: expert, competent, and trainee. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of GRAIDS and endoscopists for the identification of cancerous lesions were evaluated by calculating the 95% CIs using the Clopper-Pearson method.

Findings

1 036 496 endoscopy images from 84 424 individuals were used to develop and test GRAIDS. The diagnostic accuracy in identifying upper gastrointestinal cancers was 0·955 (95% CI 0·952–0·957) in the internal validation set, 0·927 (0·925–0·929) in the prospective set, and ranged from 0·915 (0·913–0·917) to 0·977 (0·977–0·978) in the five external validation sets. GRAIDS achieved diagnostic sensitivity similar to that of the expert endoscopist (0·942 [95% CI 0·924–0·957] vs 0·945 [0·927–0·959]; p=0·692) and superior sensitivity compared with competent (0·858 [0·832–0·880], p<0·0001) and trainee (0·722 [0·691–0·752], p<0·0001) endoscopists. The positive predictive value was 0·814 (95% CI 0·788–0·838) for GRAIDS, 0·932 (0·913–0·948) for the expert endoscopist, 0·974 (0·960–0·984) for the competent endoscopist, and 0·824 (0·795–0·850) for the trainee endoscopist. The negative predictive value was 0·978 (95% CI 0·971–0·984) for GRAIDS, 0·980 (0·974–0·985) for the expert endoscopist, 0·951 (0·942–0·959) for the competent endoscopist, and 0·904 (0·893–0·916) for the trainee endoscopist.

Interpretation

GRAIDS achieved high diagnostic accuracy in detecting upper gastrointestinal cancers, with sensitivity similar to that of expert endoscopists and was superior to that of non-expert endoscopists. This system could assist community-based hospitals in improving their effectiveness in upper gastrointestinal cancer diagnoses.

Funding

The National Key R&D Program of China, the Natural Science Foundation of Guangdong Province, the Science and Technology Program of Guangdong, the Science and Technology Program of Guangzhou, and the Fundamental Research Funds for the Central Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
放逐发布了新的文献求助10
3秒前
4秒前
shinn发布了新的文献求助10
5秒前
13秒前
flyinthesky完成签到,获得积分10
13秒前
英姑应助放逐采纳,获得10
15秒前
科目三应助温暖采纳,获得10
19秒前
Zzzzzzz完成签到 ,获得积分10
20秒前
以七完成签到 ,获得积分10
21秒前
26秒前
沉静的迎荷完成签到 ,获得积分10
30秒前
陈冰发布了新的文献求助10
32秒前
张晓祁完成签到,获得积分10
34秒前
领导范儿应助耳东采纳,获得10
35秒前
陈冰完成签到,获得积分10
39秒前
yueying完成签到,获得积分10
45秒前
半夏发布了新的文献求助10
50秒前
凉宫八月完成签到,获得积分10
55秒前
斯文败类应助科研通管家采纳,获得10
58秒前
斯文败类应助科研通管家采纳,获得10
58秒前
58秒前
58秒前
帝国之花应助科研通管家采纳,获得10
59秒前
59秒前
fighting完成签到,获得积分20
1分钟前
orixero应助半夏采纳,获得10
1分钟前
1分钟前
Yikepp发布了新的文献求助10
1分钟前
领导范儿应助shinn采纳,获得10
1分钟前
1分钟前
BowieHuang应助shinn采纳,获得10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
keyantong完成签到,获得积分10
1分钟前
橡皮鱼完成签到,获得积分10
2分钟前
科研通AI6.1应助Wonderful采纳,获得10
2分钟前
shinn发布了新的文献求助10
2分钟前
2分钟前
传奇3应助Yikepp采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772589
求助须知:如何正确求助?哪些是违规求助? 5600075
关于积分的说明 15429824
捐赠科研通 4905535
什么是DOI,文献DOI怎么找? 2639453
邀请新用户注册赠送积分活动 1587373
关于科研通互助平台的介绍 1542285