亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study

医学 癌症 内窥镜检查 癌症检测 上消化道内窥镜检查 内科学 普通外科 结直肠癌 胃肠道癌
作者
Hui Luo,Guoliang Xu,Chaofeng Li,Longjun He,Linna Luo,Zixian Wang,Bingzhong Jing,Yishu Deng,Ying Jin,Li Yin,Bin Li,Wencheng Tan,Caisheng He,Sharvesh Raj Seeruttun,Qiubao Wu,Jun Huang,De-wang Huang,Bin Chen,Shao-bin Lin,Qin-ming Chen
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:20 (12): 1645-1654 被引量:339
标识
DOI:10.1016/s1470-2045(19)30637-0
摘要

Summary

Background

Upper gastrointestinal cancers (including oesophageal cancer and gastric cancer) are the most common cancers worldwide. Artificial intelligence platforms using deep learning algorithms have made remarkable progress in medical imaging but their application in upper gastrointestinal cancers has been limited. We aimed to develop and validate the Gastrointestinal Artificial Intelligence Diagnostic System (GRAIDS) for the diagnosis of upper gastrointestinal cancers through analysis of imaging data from clinical endoscopies.

Methods

This multicentre, case-control, diagnostic study was done in six hospitals of different tiers (ie, municipal, provincial, and national) in China. The images of consecutive participants, aged 18 years or older, who had not had a previous endoscopy were retrieved from all participating hospitals. All patients with upper gastrointestinal cancer lesions (including oesophageal cancer and gastric cancer) that were histologically proven malignancies were eligible for this study. Only images with standard white light were deemed eligible. The images from Sun Yat-sen University Cancer Center were randomly assigned (8:1:1) to the training and intrinsic verification datasets for developing GRAIDS, and the internal validation dataset for evaluating the performance of GRAIDS. Its diagnostic performance was evaluated using an internal and prospective validation set from Sun Yat-sen University Cancer Center (a national hospital) and additional external validation sets from five primary care hospitals. The performance of GRAIDS was also compared with endoscopists with three degrees of expertise: expert, competent, and trainee. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of GRAIDS and endoscopists for the identification of cancerous lesions were evaluated by calculating the 95% CIs using the Clopper-Pearson method.

Findings

1 036 496 endoscopy images from 84 424 individuals were used to develop and test GRAIDS. The diagnostic accuracy in identifying upper gastrointestinal cancers was 0·955 (95% CI 0·952–0·957) in the internal validation set, 0·927 (0·925–0·929) in the prospective set, and ranged from 0·915 (0·913–0·917) to 0·977 (0·977–0·978) in the five external validation sets. GRAIDS achieved diagnostic sensitivity similar to that of the expert endoscopist (0·942 [95% CI 0·924–0·957] vs 0·945 [0·927–0·959]; p=0·692) and superior sensitivity compared with competent (0·858 [0·832–0·880], p<0·0001) and trainee (0·722 [0·691–0·752], p<0·0001) endoscopists. The positive predictive value was 0·814 (95% CI 0·788–0·838) for GRAIDS, 0·932 (0·913–0·948) for the expert endoscopist, 0·974 (0·960–0·984) for the competent endoscopist, and 0·824 (0·795–0·850) for the trainee endoscopist. The negative predictive value was 0·978 (95% CI 0·971–0·984) for GRAIDS, 0·980 (0·974–0·985) for the expert endoscopist, 0·951 (0·942–0·959) for the competent endoscopist, and 0·904 (0·893–0·916) for the trainee endoscopist.

Interpretation

GRAIDS achieved high diagnostic accuracy in detecting upper gastrointestinal cancers, with sensitivity similar to that of expert endoscopists and was superior to that of non-expert endoscopists. This system could assist community-based hospitals in improving their effectiveness in upper gastrointestinal cancer diagnoses.

Funding

The National Key R&D Program of China, the Natural Science Foundation of Guangdong Province, the Science and Technology Program of Guangdong, the Science and Technology Program of Guangzhou, and the Fundamental Research Funds for the Central Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
St完成签到,获得积分10
5秒前
Ava应助11采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
执着的un琪完成签到 ,获得积分10
22秒前
优美的谷完成签到,获得积分10
26秒前
32秒前
若空完成签到 ,获得积分10
38秒前
大个应助壮观的含桃采纳,获得10
39秒前
43秒前
muhum完成签到 ,获得积分10
56秒前
神内小天使完成签到,获得积分10
58秒前
59秒前
蹦比欸比完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
11完成签到,获得积分10
1分钟前
1分钟前
竹萧发布了新的文献求助10
1分钟前
壮观的含桃完成签到,获得积分10
1分钟前
lzxbarry完成签到,获得积分0
1分钟前
idiom完成签到 ,获得积分10
1分钟前
Hello应助family采纳,获得10
1分钟前
1分钟前
W29完成签到 ,获得积分10
1分钟前
贪玩丸子发布了新的文献求助20
1分钟前
1分钟前
Lighters发布了新的文献求助10
1分钟前
小白菜完成签到,获得积分10
1分钟前
Lighters完成签到,获得积分10
2分钟前
2分钟前
2分钟前
充电宝应助负责烤鸡采纳,获得10
2分钟前
family发布了新的文献求助10
2分钟前
蕾蕾发布了新的文献求助30
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
ming完成签到,获得积分10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792423
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281893
捐赠科研通 3053438
什么是DOI,文献DOI怎么找? 1675609
邀请新用户注册赠送积分活动 803592
科研通“疑难数据库(出版商)”最低求助积分说明 761468