Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study

医学 癌症 内窥镜检查 癌症检测 上消化道内窥镜检查 内科学 普通外科 结直肠癌 胃肠道癌
作者
Hui Luo,Guoliang Xu,Chaofeng Li,Longjun He,Linna Luo,Zixian Wang,Bingzhong Jing,Yishu Deng,Ying Jin,Li Yin,Bin Li,Wencheng Tan,Caisheng He,Sharvesh Raj Seeruttun,Qiubao Wu,Jun Huang,De-wang Huang,Bin Chen,Shao-bin Lin,Qin-ming Chen
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:20 (12): 1645-1654 被引量:346
标识
DOI:10.1016/s1470-2045(19)30637-0
摘要

Summary

Background

Upper gastrointestinal cancers (including oesophageal cancer and gastric cancer) are the most common cancers worldwide. Artificial intelligence platforms using deep learning algorithms have made remarkable progress in medical imaging but their application in upper gastrointestinal cancers has been limited. We aimed to develop and validate the Gastrointestinal Artificial Intelligence Diagnostic System (GRAIDS) for the diagnosis of upper gastrointestinal cancers through analysis of imaging data from clinical endoscopies.

Methods

This multicentre, case-control, diagnostic study was done in six hospitals of different tiers (ie, municipal, provincial, and national) in China. The images of consecutive participants, aged 18 years or older, who had not had a previous endoscopy were retrieved from all participating hospitals. All patients with upper gastrointestinal cancer lesions (including oesophageal cancer and gastric cancer) that were histologically proven malignancies were eligible for this study. Only images with standard white light were deemed eligible. The images from Sun Yat-sen University Cancer Center were randomly assigned (8:1:1) to the training and intrinsic verification datasets for developing GRAIDS, and the internal validation dataset for evaluating the performance of GRAIDS. Its diagnostic performance was evaluated using an internal and prospective validation set from Sun Yat-sen University Cancer Center (a national hospital) and additional external validation sets from five primary care hospitals. The performance of GRAIDS was also compared with endoscopists with three degrees of expertise: expert, competent, and trainee. The diagnostic accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of GRAIDS and endoscopists for the identification of cancerous lesions were evaluated by calculating the 95% CIs using the Clopper-Pearson method.

Findings

1 036 496 endoscopy images from 84 424 individuals were used to develop and test GRAIDS. The diagnostic accuracy in identifying upper gastrointestinal cancers was 0·955 (95% CI 0·952–0·957) in the internal validation set, 0·927 (0·925–0·929) in the prospective set, and ranged from 0·915 (0·913–0·917) to 0·977 (0·977–0·978) in the five external validation sets. GRAIDS achieved diagnostic sensitivity similar to that of the expert endoscopist (0·942 [95% CI 0·924–0·957] vs 0·945 [0·927–0·959]; p=0·692) and superior sensitivity compared with competent (0·858 [0·832–0·880], p<0·0001) and trainee (0·722 [0·691–0·752], p<0·0001) endoscopists. The positive predictive value was 0·814 (95% CI 0·788–0·838) for GRAIDS, 0·932 (0·913–0·948) for the expert endoscopist, 0·974 (0·960–0·984) for the competent endoscopist, and 0·824 (0·795–0·850) for the trainee endoscopist. The negative predictive value was 0·978 (95% CI 0·971–0·984) for GRAIDS, 0·980 (0·974–0·985) for the expert endoscopist, 0·951 (0·942–0·959) for the competent endoscopist, and 0·904 (0·893–0·916) for the trainee endoscopist.

Interpretation

GRAIDS achieved high diagnostic accuracy in detecting upper gastrointestinal cancers, with sensitivity similar to that of expert endoscopists and was superior to that of non-expert endoscopists. This system could assist community-based hospitals in improving their effectiveness in upper gastrointestinal cancer diagnoses.

Funding

The National Key R&D Program of China, the Natural Science Foundation of Guangdong Province, the Science and Technology Program of Guangdong, the Science and Technology Program of Guangzhou, and the Fundamental Research Funds for the Central Universities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
糖糖完成签到 ,获得积分10
2秒前
2秒前
搜集达人应助1234采纳,获得10
3秒前
issl完成签到,获得积分10
4秒前
5秒前
5秒前
袁大头发布了新的文献求助10
6秒前
6秒前
华仔应助sniper采纳,获得10
6秒前
mmmm发布了新的文献求助10
6秒前
Dmooou发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
嘻嘻嘻完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
保洁王姐发布了新的文献求助10
10秒前
DT完成签到 ,获得积分10
10秒前
11秒前
orixero应助从容的凡双采纳,获得10
11秒前
12秒前
丘比特应助超越好帅采纳,获得10
13秒前
酷波er应助仁爱平文采纳,获得10
13秒前
QQ发布了新的文献求助10
14秒前
zxd1999发布了新的文献求助10
15秒前
16秒前
正直的飞丹完成签到,获得积分10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
ikun应助科研通管家采纳,获得10
16秒前
不安青牛应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
袁大头发布了新的文献求助10
16秒前
不安青牛应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得50
16秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4649514
求助须知:如何正确求助?哪些是违规求助? 4037567
关于积分的说明 12488453
捐赠科研通 3727538
什么是DOI,文献DOI怎么找? 2057364
邀请新用户注册赠送积分活动 1088282
科研通“疑难数据库(出版商)”最低求助积分说明 969452