计算机科学
卷积(计算机科学)
人工智能
计算机视觉
任务(项目管理)
卷积码
变压器
模式识别(心理学)
卷积神经网络
基本事实
算法
工程类
电压
解码方法
电气工程
人工神经网络
系统工程
作者
Bei Chen,Jiabin Yuan,Xiuping Bao
标识
DOI:10.1109/ictai.2019.00058
摘要
We present a 3D densely connected convolutional networks(DenseNet3D) for the task of automatic 2D-to-3D video conversion. In contrast to previous automatic 2D-to-3D conversion algorithms, which have separate stages and need ground truth depth as supervision, our method uses spatial transformer networks to combine the separate stages so that our model can be trained end-to-end and directly use stereo image pairs as supervision. We further propose a 3D densely connected convolutional networks(DenseNet3D), which replace the original convolution layer with 3D convolution in densely connected convolutional networks to capture the spatiotemporal characteristics of videos. The experiment shows that the network has better results and faster speed than existing state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI