Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Synthesis

图像融合 模态(人机交互) 模式 计算机科学 人工智能 情态动词 模式识别(心理学) 计算机视觉 传感器融合 图像(数学) 代表(政治) 社会学 政治 社会科学 化学 高分子化学 法学 政治学
作者
Tao Zhou,Huazhu Fu,Geng Chen,Jianbing Shen,Ling Shao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 2772-2781 被引量:305
标识
DOI:10.1109/tmi.2020.2975344
摘要

Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can provide images of different contrasts (i.e., modalities). Fusing this multi-modal data has proven particularly effective for boosting model performance in many tasks. However, due to poor data quality and frequent patient dropout, collecting all modalities for every patient remains a challenge. Medical image synthesis has been proposed as an effective solution, where any missing modalities are synthesized from the existing ones. In this paper, we propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis, which learns a mapping from multi-modal source images (i.e., existing modalities) to target images (i.e., missing modalities). In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality, and a fusion network is employed to learn the common latent representation of multi-modal data. Then, a multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality, acting as a generator to synthesize the target images. Moreover, a layer-wise multi-modal fusion strategy effectively exploits the correlations among multiple modalities, where a Mixed Fusion Block (MFB) is proposed to adaptively weight different fusion strategies. Extensive experiments demonstrate the proposed model outperforms other state-of-the-art medical image synthesis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hd发布了新的文献求助10
1秒前
ss完成签到,获得积分10
1秒前
甘地发布了新的文献求助10
2秒前
2秒前
bill关注了科研通微信公众号
2秒前
4秒前
5秒前
哦哦哦发布了新的文献求助10
5秒前
秋子david发布了新的文献求助10
5秒前
传奇3应助wei采纳,获得10
6秒前
Orange应助JIN采纳,获得10
6秒前
huan完成签到,获得积分10
6秒前
愉快的翅膀完成签到,获得积分10
7秒前
宁静致远完成签到,获得积分10
7秒前
嘻嘻发布了新的文献求助10
8秒前
上官若男应助weddcf采纳,获得10
8秒前
ninomae完成签到 ,获得积分10
8秒前
dai完成签到,获得积分20
10秒前
肚皮完成签到 ,获得积分0
11秒前
12秒前
wanci应助啦啦啦啦啦啦啦采纳,获得10
13秒前
尊敬的怀曼完成签到 ,获得积分10
13秒前
草莓布丁应助susu采纳,获得30
13秒前
fang完成签到 ,获得积分0
14秒前
15秒前
DNA完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
木头星星应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得30
17秒前
王优秀完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
Battery应助科研通管家采纳,获得10
18秒前
envdavid完成签到,获得积分10
18秒前
大个应助科研通管家采纳,获得10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474