清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Reporting and Implementing Interventions Involving Machine Learning and Artificial Intelligence

医学 心理干预 人工智能 机器学习 计算机科学 护理部
作者
David W. Bates,Andrew D. Auerbach,Peter Schulam,Adam Wright,Suchi Saria
出处
期刊:Annals of Internal Medicine [American College of Physicians]
卷期号:172 (11_Supplement): S137-S144 被引量:83
标识
DOI:10.7326/m19-0872
摘要

Increasingly, interventions aimed at improving care are likely to use such technologies as machine learning and artificial intelligence. However, health care has been relatively late to adopt them. This article provides clinical examples in which machine learning and artificial intelligence are already in use in health care and appear to deliver benefit. Three key bottlenecks toward increasing the pace of diffusion and adoption are methodological issues in evaluation of artificial intelligence-based interventions, reporting standards to enable assessment of model performance, and issues that need to be addressed for an institution to adopt these interventions. Methodological best practices will include external validation, ideally at a different site; use of proactive learning algorithms to correct for site-specific biases and increase robustness as algorithms are deployed across multiple sites; addressing subgroup performance; and communicating to providers the uncertainty of predictions. Regarding reporting, especially important issues are the extent to which implementing standardized approaches for introducing clinical decision support has been followed, describing the data sources, reporting on data assumptions, and addressing biases. Although most health care organizations in the United States have adopted electronic health records, they may be ill prepared to adopt machine learning and artificial intelligence. Several steps can enable this: preparing data, developing tools to get suggestions to clinicians in useful ways, and getting clinicians engaged in the process. Open challenges and the role of regulation in this area are briefly discussed. Although these techniques have enormous potential to improve care and personalize recommendations for individuals, the hype regarding them is tremendous. Organizations will need to approach this domain carefully with knowledgeable partners to obtain the hoped-for benefits and avoid failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝飞槐发布了新的文献求助10
1秒前
herpes完成签到 ,获得积分0
9秒前
搜集达人应助碧蓝飞槐采纳,获得10
11秒前
量子星尘发布了新的文献求助10
14秒前
慕青应助坑坑采纳,获得10
17秒前
单小芫完成签到 ,获得积分10
24秒前
Lyn完成签到 ,获得积分10
26秒前
威武的大树完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
42秒前
46秒前
坑坑发布了新的文献求助10
53秒前
喜悦的香之完成签到 ,获得积分10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
传奇3应助坑坑采纳,获得10
1分钟前
1分钟前
可爱的函函应助坑坑采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
甜美砖家完成签到 ,获得积分10
1分钟前
坑坑发布了新的文献求助10
1分钟前
正直的夏真完成签到 ,获得积分10
1分钟前
1分钟前
maxthon完成签到,获得积分10
1分钟前
2分钟前
2分钟前
坑坑发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
无花果应助TSTL采纳,获得30
2分钟前
2分钟前
zjq完成签到 ,获得积分10
2分钟前
情怀应助坑坑采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
坑坑发布了新的文献求助10
2分钟前
2分钟前
个性松完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864031
求助须知:如何正确求助?哪些是违规求助? 3406317
关于积分的说明 10648984
捐赠科研通 3130211
什么是DOI,文献DOI怎么找? 1726322
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990