静电纺丝
聚丙烯腈
纳米纤维
材料科学
纤维
喷射(流体)
聚合物
扫描电子显微镜
复合材料
电场
高分子化学
机械
物理
量子力学
作者
Nagham Ismail,Fouad Junior Maksoud,Nesreen Ghaddar,Kamel Ghali,Ali Reza Tehrani‐Bagha
摘要
ABSTRACT Electrospinning allows the production of ultrafine nanofibers through the stretching of a charged polymer jet with an external electrostatic field. In this study, we derived a simplified and accurate model relating the processing parameters, including the solution volumetric flow rate ( Q ), the applied electric field ( E ), and the polymer concentration, to the final fiber diameter. The model takes into consideration the jet behavior starting at the stable region and moving to the bending instability region. We validated the model experimentally by performing the electrospinning process with a polyacrylonitrile/ N,N ‐dimethylformamide solution with different ranges of concentrations (8–11 wt %), Q s (900–1320 μL/h), and E s (88,889–113,889 V/m). The final fiber diameter was measured with scanning electron microscopy. The model predicted the fiber diameter with a relative error of less than 10%. Moreover, a 30% increase in Q resulted in a 15% increase in the fiber diameter, whereas a 30% increase in E resulted in a 14% decrease in the fiber diameter. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 44112.
科研通智能强力驱动
Strongly Powered by AbleSci AI