亚辛
材料科学
纳米技术
有机半导体
晶体管
结晶度
薄膜晶体管
结晶
数码产品
有机电子学
微观结构
制作
薄膜
电子线路
半导体
光电子学
化学工程
图层(电子)
电气工程
分子
复合材料
化学
有机化学
医学
替代医学
电压
病理
工程类
作者
David J. Gundlach,James E. Royer,S. K. Park,Sankar Subramanian,Oana D. Jurchescu,Behrang H. Hamadani,Andrew J. Moad,R. Joseph Kline,Lucile C. Teague,Oleg A. Kirillov,Curt A. Richter,James G. Kushmerick,Lee J. Richter,Sean Parkin,Thomas N. Jackson,John E. Anthony
出处
期刊:Nature Materials
[Springer Nature]
日期:2008-02-17
卷期号:7 (3): 216-221
被引量:448
摘要
The use of organic materials presents a tremendous opportunity to significantly impact the functionality and pervasiveness of large-area electronics. Commercialization of this technology requires reduction in manufacturing costs by exploiting inexpensive low-temperature deposition and patterning techniques, which typically lead to lower device performance. We report a low-cost approach to control the microstructure of solution-cast acene-based organic thin films through modification of interfacial chemistry. Chemically and selectively tailoring the source/drain contact interface is a novel route to initiating the crystallization of soluble organic semiconductors, leading to the growth on opposing contacts of crystalline films that extend into the transistor channel. This selective crystallization enables us to fabricate high-performance organic thin-film transistors and circuits, and to deterministically study the influence of the microstructure on the device characteristics. By connecting device fabrication to molecular design, we demonstrate that rapid film processing under ambient room conditions and high performance are not mutually exclusive.
科研通智能强力驱动
Strongly Powered by AbleSci AI