Artificial Intelligence for Lithology Identification through Real-Time Drilling Data

岩性 钻探 地质学 油页岩 人工神经网络 井漏 鉴定(生物学) 石油工程 钻井液 随钻测量 数据挖掘 人工智能 计算机科学 岩石学 工程类 古生物学 植物 生物 机械工程
作者
Alireza Moazzeni Mohammad Ali
出处
期刊:Journal of Earth Science & Climatic Change [OMICS Publishing Group]
卷期号:06 (03) 被引量:41
标识
DOI:10.4172/2157-7617.1000265
摘要

In order to reduce drilling problems such as loss of circulation and kick, and to increase drilling rate, bit optimization and shale swelling prohibition, it is important to predict formation type and lithology in a well before drilling or at least during drilling. Although there are some methods for finding out the lithology such as log interpretation, there is no method for determining lithology before or during drilling by a great degree of accuracy. Determination of formation type and lithology is very complicated and no analytical method is presented for this problem so far. In this situation, it seems that artificial intelligence could be really helpful. Neural networks can establish complicated non-linear mapping between inputs and outputs. In this paper, formation type and lithology of the formation will be predicted using real-time drilling data with an acceptable accuracy, while drilling that formation using artificial neural network. 47500 sets of data from 12 wells in South Pars gas field (in south of Iran) were selected and, after data mining and quality control, were imported to artificial neural networks. Results show that neural networks can determine type of formation and lithology with near 90% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
1秒前
称心访文发布了新的文献求助10
1秒前
111完成签到 ,获得积分10
2秒前
2秒前
潘则宇完成签到,获得积分10
2秒前
djx发布了新的文献求助10
2秒前
2秒前
xm发布了新的文献求助10
3秒前
ZQQ发布了新的文献求助10
5秒前
6秒前
科目三应助automan采纳,获得10
6秒前
7秒前
1212完成签到 ,获得积分10
7秒前
pluto应助香香香采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
清脆的飞丹完成签到,获得积分10
8秒前
9秒前
9秒前
11秒前
糖果屋完成签到,获得积分10
11秒前
Eason完成签到,获得积分20
12秒前
12秒前
xgx984完成签到,获得积分10
12秒前
LL发布了新的文献求助10
12秒前
12秒前
元儿圆发布了新的文献求助20
12秒前
13秒前
13秒前
糖果屋发布了新的文献求助10
14秒前
14秒前
14秒前
泽锦臻完成签到,获得积分10
17秒前
万能图书馆应助追风采纳,获得10
18秒前
18秒前
小肖完成签到 ,获得积分10
18秒前
20秒前
义气的如豹完成签到,获得积分10
20秒前
djx发布了新的文献求助10
20秒前
小半完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532468
求助须知:如何正确求助?哪些是违规求助? 4621206
关于积分的说明 14577283
捐赠科研通 4561064
什么是DOI,文献DOI怎么找? 2499144
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450333