涡度
数学
无粘流
有界函数
数学分析
纳维-斯托克斯方程组
欧拉方程
涡度方程
领域(数学分析)
极限(数学)
汉堡漩涡
Navier-Stokes方程的无量纲化和标度
不可压缩流
压缩性
流量(数学)
涡流
经典力学
物理
机械
几何学
作者
Thierry Clopeau,Andro Mikelić,Raoul Robert
出处
期刊:Nonlinearity
[IOP Publishing]
日期:1998-11-01
卷期号:11 (6): 1625-1636
被引量:218
标识
DOI:10.1088/0951-7715/11/6/011
摘要
The vanishing viscosity limit is considered for the incompressible 2D Navier-Stokes equations in a bounded domain. Motivated by studies of turbulent flow we suppose Navier's friction condition in the tangential direction, i.e. the creation of a vorticity proportional to the tangential velocity. We prove the existence of the regular solutions for the Navier-Stokes equations with smooth compatible data and of the solutions with bounded vorticity for initial vorticity being only bounded. Finally, we establish a uniform -bound for the vorticity and convergence to the incompressible 2D Euler equations in the inviscid limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI