651 Molecular signature of neoantigen-reactive CD4+ and CD8+ T cells from metastatic human cancers enables prospective antitumor TCR prediction

作者
Frank J. Lowery,Sri Krishna,Rami Yoseph,Neilesh Parikh,Praveen D. Chatani,Yong-Chen William Lu,Nikolaos Zacharakis,Paul D. Robbins,Maria R. Parkhurst,Steven A. Rosenberg
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:9
标识
DOI:10.1136/jitc-2021-sitc2021.651
摘要

Background Autologous patient T cells engineered to express antitumor T cell receptors (TCRs) and chimeric antigen receptors (CARs) have been effective for the treatment of certain cancer types,1–4 and tumor neoantigens encoded by cancer-specific mutations have emerged as major targets of CD4+ and CD8+ T cells in immune checkpoint blockade (ICB) and in adoptive cell therapy (ACT).5–9 However, only a minority of intratumoral T cells are reactive to cancer antigens while the majority represent bystander cells.10–12 Conventional approaches to isolate tumor-reactive T cells and identify their TCRs from tumors rely on T cell function and can be impaired due to T cell exhaustion and dysfunction.13 14 Methods We performed single-cell RNA and T cell receptor (TCR) sequencing (scRNA/TCR-seq) on over 46,000 T cells isolated from eleven archival metastatic tumor samples whose primary cancer types included colon, rectal, breast, anal, and melanoma. From these samples, 15 CD8+ and 17 CD4+ neoantigen-reactive TCR clonotypes (NeoTCRs) were known. We then performed transcriptomic clustering of these cells and mapped known NeoTCR clonotypes onto the transcriptomic map. Subsequently we predicted NeoTCRs from prospective metastatic colon cancer samples based on their presence within clusters sharing gene expression with NeoTCR+ clusters in the archival samples. Results Projecting known NeoTCRs onto the TIL transcriptomic map, we observed 325 total T cells bearing these NeoTCRs, and the majority (>80%) of NeoTCRs were expressed by T cells within 2 clusters, one CD4+ and one CD8+, that included by expression of CXCL13, ENTPD1 (CD39), TOX, TIGIT, LAG3, and PDCD1 (PD-1), indicating a dysfunctional state. Reasoning that T cells sharing phenotypes with those within the NeoTCR clusters could be novel NeoTCRs, we developed gene signatures (NeoTCR4 and NeoTCR8) of CD4 and CD8 NeoTCR+ cells, respectively, and four prospective patients9 TIL were analyzed by scRNA/TCR-seq and scored according to NeoTCR signatures. We expressed predicted NeoTCRs in healthy donor PBL and screened them with antigen presenting cells (APCs) expressing candidate neoantigens. 33/73 predicted NeoTCRs (including both CD4 and CD8) were reactive against patients9 tumors or candidate neoantigens. Conclusions This study enabled successful detection of tumor-specific NeoTCRs in the sequenced TIL of 14/14 patients for whom reactivity was studied. Deconvolution of NeoTCRs from bystander TCRs within the tumor-immune microenvironment represents an important step in the development of personalized immunotherapeutics, and prospective NeoTCR isolation based on TIL transcriptional phenotypes will allow for rapid development of personalized immunotherapy in the form of lymphocytes expressing these tumor-specific TCRs. Acknowledgements We thank the Surgery Branch TIL Laboratory and clinical team for generating TIL, and patients enrolled in our clinical protocols. Support from CCR Single Cell Analysis Facility was funded by FNLCR Contract HHSN261200800001E. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). We also thank NIDAP for providing additional computational support and the CCR Genomics Core for next-generation sequencing support References Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CCR, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA.Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29:917–924. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006;314:126–129. June CH, Sadelain M. Chimeric Antigen Receptor Therapy. N Engl J Med 2018;379:64–73. Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010;116:3875–3886. Tran E, Robbins PF, Rosenberg SA, “Final common pathway” of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 2017;18:255–262. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA, Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013;19:747–752. Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, Ivey G, Li YF, El-Gamil M, Lalani A, Crystal JS, Sachs A, Groh E, Ray S, Ngo LT, Kivitz S, Pasetto A, Yossef R, Lowery FJ, Goff SL, Lo W, Cafri G, Deniger DC, Malekzadeh P, Ahmadzadeh M, Wunderlich JR, Somerville RPT, Rosenberg SA. Unique Neoantigens Arise from Somatic Mutations in Patients with Gastrointestinal Cancers. Cancer Discov 2019;9:1022–1035. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SSK, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJM, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014;515:577–581. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJA, Behjati S, Hilkmann H, el Atmioui D, Nieuwland M, Stratton MR, Kerkhoven RM, Kesmir C, Haanen JB, Kvistborg P, Schumacher TN. Tumor Exome Analysis Reveals Neoantigen-Specific T-Cell Reactivity in an Ipilimumab-Responsive Melanoma. Journal of Clinical Oncology 2013;31:e439–e442. Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, Goodall CP, Blair TC, Fox BA, McDermott JE, Chang SC, Grunkemeier G, Leidner R, Bell RB, Weinberg AD. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 2018;9:2724. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW, Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579. Scheper W, Kelderman S, Fanchi LF, Linnemann C, Bendle G, de Rooij MAJ, Hirt C, Mezzadra R, Slagter M, Dijkstra K, Kluin RJC, Snaebjornsson P, Milne K, Nelson BH, Zijlmans H, Kenter G, Voest EE, Haanen JBAG, Schumacher TN. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat Med 2019;25:89–94. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, Lynn RC, Philip M, Rao A, Restifo NP, Schietinger A, Schumacher TN, Schwartzberg PL, Sharpe AH, Speiser DE, Wherry EJ, Youngblood BA, Zehn D. Defining “T cell exhaustion.” Nat Rev Immunol 2019;19:665–674. van der Leun AM, Thommen DS, Schumacher TN. CD8 T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 2020;20:218–232.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rocky15应助jia采纳,获得20
刚刚
刚刚
2秒前
一鸣完成签到,获得积分20
4秒前
传奇3应助李陌陌采纳,获得30
6秒前
Ziwei发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
高高万天发布了新的文献求助10
9秒前
10秒前
鹿飞飞发布了新的文献求助30
12秒前
12秒前
shengxai12e发布了新的文献求助10
14秒前
15秒前
NMC发布了新的文献求助10
15秒前
15秒前
乔项琦完成签到 ,获得积分10
16秒前
现代的眼睛完成签到 ,获得积分10
16秒前
周林发布了新的文献求助10
17秒前
18秒前
鹿飞飞完成签到,获得积分10
18秒前
Ava应助热心的书蕾采纳,获得10
18秒前
18秒前
look发布了新的文献求助10
20秒前
20秒前
豌豆发布了新的文献求助10
20秒前
21秒前
23秒前
打打应助科研通管家采纳,获得10
24秒前
热切菩萨应助科研通管家采纳,获得10
24秒前
热切菩萨应助科研通管家采纳,获得10
24秒前
赘婿应助科研通管家采纳,获得10
24秒前
24秒前
科目三应助科研通管家采纳,获得10
24秒前
热切菩萨应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
刘备发布了新的文献求助10
25秒前
26秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Yaws' Handbook of Antoine coefficients for vapor pressure 500
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
行動データの計算論モデリング 強化学習モデルを例として 500
Johann Gottlieb Fichte: Die späten wissenschaftlichen Vorlesungen / IV,1: ›Transzendentale Logik I (1812)‹ 400
The role of families in providing long term care to the frail and chronically ill elderly living in the community 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2555538
求助须知:如何正确求助?哪些是违规求助? 2179732
关于积分的说明 5620864
捐赠科研通 1901024
什么是DOI,文献DOI怎么找? 949540
版权声明 565592
科研通“疑难数据库(出版商)”最低求助积分说明 504748