WetNet: A Spatial–Temporal Ensemble Deep Learning Model for Wetland Classification Using Sentinel-1 and Sentinel-2

计算机科学 人工智能 深度学习 土地覆盖 合成孔径雷达 Boosting(机器学习) 机器学习 遥感 数据挖掘 模式识别(心理学) 土地利用 地理 工程类 土木工程
作者
Benyamin Hosseiny,Masoud Mahdianpari,Brian Brisco,Fariba Mohammadimanesh,Bahram Salehi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:59
标识
DOI:10.1109/tgrs.2021.3113856
摘要

While deep learning models have been extensively applied to land-use land-cover (LULC) problems, it is still a relatively new and emerging topic for separating and classifying wetland types. On the other hand, ensemble learning has demonstrated promising results in improving and boosting classification accuracy. Accordingly, this study aims to develop a classification system for mapping complex wetland areas by incorporating deep ensemble learning and satellite datasets. To this end, time series of Sentinel-1 dual-polarized Synthetic Aperture Radar (SAR) dataset, alongside Sentinel-2 multispectral imagery (MSI), are used as input data to the model. In order to increase the diversity of the extracted features, the proposed model, herein called WetNet, consists of three different submodels, comprising several recurrent and convolutional layers. Furthermore, multiple ensembling sections are added to different stages of the model to increase the transferability of the model (to other areas) and the reliability of the final results. WetNet is evaluated in a complex wetland area located in Newfoundland, Canada. Experimental results indicate that WetNet outperforms the state-of-the-art deep models (e.g., InceptionResnetV2, InceptionV3, and DenseNet121) in terms of both the classification accuracy and processing time. This makes WetNet an efficient model for large-scale wetland mapping application. The python code of the proposed WetNet model is available at the following link for the sake of reproducibility: https://colab.research.google.com/drive/1pvMOd3_tFYaMYGyHNfxqDxOiwF78lKgN?usp=sharing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ZZ发布了新的文献求助30
4秒前
WalkToSky完成签到,获得积分10
4秒前
Harley完成签到,获得积分10
6秒前
科研通AI5应助曦麟采纳,获得10
7秒前
7秒前
WW完成签到,获得积分10
8秒前
灯灯完成签到,获得积分10
8秒前
复杂的板凳完成签到,获得积分10
10秒前
打打应助ZZ采纳,获得10
11秒前
11秒前
竹車应助ABin采纳,获得10
12秒前
12秒前
13秒前
ZhouYW完成签到,获得积分0
13秒前
14秒前
情怀应助科研通管家采纳,获得30
14秒前
谢小盟应助科研通管家采纳,获得10
14秒前
核桃应助科研通管家采纳,获得10
14秒前
14秒前
核桃应助科研通管家采纳,获得10
14秒前
核桃应助科研通管家采纳,获得10
14秒前
谢小盟应助科研通管家采纳,获得10
14秒前
luhaiyan应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
15秒前
竹車应助迪克bin采纳,获得10
15秒前
甘泊寓完成签到,获得积分10
16秒前
16秒前
搜集达人应助林少玮采纳,获得10
16秒前
WW发布了新的文献求助10
16秒前
仲乔妹完成签到,获得积分10
16秒前
核桃应助余柳采纳,获得10
17秒前
Vivian完成签到 ,获得积分10
17秒前
木鱼发布了新的文献求助10
18秒前
INNE完成签到,获得积分10
18秒前
19秒前
certe完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4466302
求助须知:如何正确求助?哪些是违规求助? 3928056
关于积分的说明 12189463
捐赠科研通 3581329
什么是DOI,文献DOI怎么找? 1967965
邀请新用户注册赠送积分活动 1006410
科研通“疑难数据库(出版商)”最低求助积分说明 900566