The optimization of state of charge and state of health estimation for lithium‐ions battery using combined deep learning and Kalman filter methods

荷电状态 卡尔曼滤波器 健康状况 扩展卡尔曼滤波器 控制理论(社会学) 电压降 电池(电) 等效电路 工程类 锂离子电池 电压 国家(计算机科学) 计算机科学 算法 电气工程 人工智能 物理 功率(物理) 量子力学 控制(管理)
作者
Yu Shi,Shakeel Ahmad,Qing Tong,Tuti Mariana Lim,Zhongbao Wei,Dongxu Ji,Chika Eze,Jiyun Zhao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (7): 11206-11230 被引量:24
标识
DOI:10.1002/er.6601
摘要

An accurate estimate of the battery state of charge and state of health is critical to ensure the lithium-ion battery's efficiency and safety. The equivalent circuit model-based methods and data-driven models show the potential for robust estimation. However, the state of charge and state of health estimation system's performance with a parallel comparison has been rarely investigated. In this study, the performances of state of charge and state of health with equivalent circuit model-based methods and data-driven estimations are analyzed by different aged and capacity batteries through methods including extended Kalman filters, fully connected deep network with drop methods, and the combination (extended Kalman filters—fully connected deep network with drop methods). Besides the battery state of the voltage and current, the relationship between inner resistance, temperature, and capacity are also considered. Finally, a suggested method is promising for online state estimation of battery working at different temperatures and initial working state. The results indicate that the maximum state of charge estimation errors of the fully connected deep network with drop methods is 0.56% for the fully charged battery. Simultaneously, with an uncertain initial state of charge, the extended Kalman filter shows the lowest maximum state of charge estimation errors (1.4%). For the state of health estimation, the optimized method uses extended Kalman filters to do the monitor first; after 5 testing points, if the state of health drops to lower than 0.95, extended Kalman filters—fully connected deep network with drop methods is suggested. And finally, estimation errors for this method decreased from 30% to 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛇虫鼠蚁应助dingding采纳,获得10
刚刚
刚刚
饱满秋完成签到,获得积分10
1秒前
Akiii_完成签到,获得积分10
1秒前
2秒前
shuyi_liu完成签到,获得积分20
2秒前
enen完成签到,获得积分10
2秒前
Rachael发布了新的文献求助10
3秒前
xmxm发布了新的文献求助10
4秒前
wangdong发布了新的文献求助10
4秒前
6秒前
jun完成签到 ,获得积分10
7秒前
科研通AI5应助Ashui采纳,获得10
7秒前
恣意完成签到 ,获得积分10
7秒前
candy teen完成签到,获得积分10
7秒前
对对对完成签到,获得积分10
8秒前
Huaaaaaz发布了新的文献求助10
9秒前
9秒前
LZQ应助荆轲刺秦王采纳,获得10
10秒前
称心的问薇完成签到,获得积分10
10秒前
吕吕发布了新的文献求助10
12秒前
山260完成签到 ,获得积分10
13秒前
14秒前
14秒前
静静完成签到,获得积分10
16秒前
zty关闭了zty文献求助
17秒前
研究水合物的小白完成签到 ,获得积分10
17秒前
爱吃饼干的土拨鼠完成签到,获得积分10
17秒前
美好焦完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
清秀梦曼发布了新的文献求助10
22秒前
aaa142hehe完成签到 ,获得积分10
22秒前
领导范儿应助我爱科研采纳,获得10
22秒前
cap发布了新的文献求助10
23秒前
淡定思枫完成签到,获得积分10
24秒前
26秒前
white完成签到 ,获得积分10
26秒前
落后钢铁侠完成签到 ,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812524
求助须知:如何正确求助?哪些是违规求助? 3357072
关于积分的说明 10385087
捐赠科研通 3074263
什么是DOI,文献DOI怎么找? 1688684
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986