Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism

刀具磨损 人工智能 停工期 过程(计算) 人工神经网络 计算机科学 特征(语言学) 机械加工 卷积神经网络 残余物 工程类 机械工程 可靠性工程 算法 操作系统 哲学 语言学
作者
Xingwei Xu,Jianwen Wang,Bingfu Zhong,Weiwei Ming,Ming Chen
出处
期刊:Measurement [Elsevier BV]
卷期号:177: 109254-109254 被引量:113
标识
DOI:10.1016/j.measurement.2021.109254
摘要

Tool wear is a key factor in the cutting process, which directly affects the machining precision and part quality. Accurate tool wear prediction can make proper tool change at an early stage to reduce downtime and enhance product quality. However, traditional methods can not meet the high requirements of the intelligent manufacturing. Therefore, a novel method based on deep learning is proposed to improve the prediction accuracy of tool wear. The multi-scale feature fusion was implemented by the developed parallel convolutional neural networks. The channel attention mechanism combined with the residual connection was developed to consider the weight of the different feature map to enhance the performance of the model. The different tool wear prediction experiments were implemented to verify the superiority of the developed method, and the prediction results of tool wear are more robust and accurate than current methods. Finally, a tool wear monitoring system was developed and applied to the tapping process of the engine cylinder to ensure the quality of the engine cylinder and the stability of the machining process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助youasheng采纳,获得10
1秒前
星辰大海应助Nicky采纳,获得10
2秒前
4秒前
KK发布了新的文献求助20
6秒前
6秒前
明理小凝完成签到 ,获得积分10
7秒前
DE2022发布了新的文献求助10
8秒前
李健应助January采纳,获得10
9秒前
10秒前
shangying发布了新的文献求助10
10秒前
李健应助jin采纳,获得10
12秒前
哇撒完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
15秒前
SciGPT应助小石榴的爸爸采纳,获得10
15秒前
爆米花应助小石榴的爸爸采纳,获得10
15秒前
爆米花应助小石榴的爸爸采纳,获得10
15秒前
15秒前
shangying完成签到,获得积分20
15秒前
求助123发布了新的文献求助10
18秒前
21秒前
23秒前
tao发布了新的文献求助10
25秒前
drwalyssa发布了新的文献求助10
26秒前
求助123完成签到,获得积分10
26秒前
28秒前
30秒前
January发布了新的文献求助10
32秒前
小远完成签到,获得积分10
32秒前
35秒前
36秒前
思源应助阿诺德采纳,获得10
38秒前
Nicky发布了新的文献求助10
42秒前
48秒前
48秒前
zhengjianlong完成签到,获得积分10
49秒前
50秒前
小太阳完成签到,获得积分10
51秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802565
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337284
捐赠科研通 3064213
什么是DOI,文献DOI怎么找? 1682478
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010