Inferring management and predicting sub-field scale C dynamics in UK grasslands using biogeochemical modelling and satellite-derived leaf area data

生物地球化学循环 环境科学 比例(比率) 卫星 遥感 领域(数学) 气象学 大气科学 地理 生态学 地质学 地图学 生物 物理 数学 纯数学 天文
作者
Vasileios Myrgiotis,Paul Harris,Andrew Revill,Hadewij Sint,Mathew Williams
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:307: 108466-108466 被引量:14
标识
DOI:10.1016/j.agrformet.2021.108466
摘要

• Earth observation data and process modelling are combined to estimate grassland C dynamics. • The model-data fusion algorithm infers grazing and cutting from leaf area index data. • The algorithm was implemented at 3 managed grasslands in England for 2015–2018. • 87.5% of harvests were identified and 83% of measured yields were simulated accurately. • The in-situ estimated and simulated grazed biomass had a r = 0.8 . Grasslands, natural and managed, cover a large part of the Earth’s surface and play an important role in the global carbon (C) cycle. Human management strongly affects grassland C budgets through grass cutting and removal, varied grazing intensities, and organic matter additions. Thus managed grassland C cycles are highly heterogeneous and challenging to quantify. In this study, we combine a process-based model of the grassland C cycle, validated against field data on C fluxes and pools, with satellite-derived data (Proba-V and Sentinel-2) on leaf area index (LAI) in order to quantify field-scale grassland productivity and C dynamics under climatic and management conditions typical of northwest Europe. Input data on the weekly vegetation canopy anomaly (estimated from Proba-V LAI) and meteorology are used to drive the grassland C model (DALEC-Grass) that is integrated into a Bayesian model-data fusion (MDF) framework. The novelty of the MDF algorithm is that it infers weekly livestock grazing and grass cutting events based on expected canopy growth estimated by the model, and constrained by LAI observations (estimated from Sentinel-2). The MDF approach also resolves observational, parametric, and input uncertainties on C cycling estimates. We analysed four years (2015–2018) of C dynamics at three variably-managed fields of the Rothamsted Research North Wyke Farm Platform (UK). Compared against independent field data, the MDF was able to (i) identify 87.5% of the harvest events that occurred, (ii) accurately predict the annual yields in 83% of the identified harvest years and (iii) reproduce the observed grazing intensity in each field ( r = 0.8 , overlap = 90%). We demonstrate that the fusion of process modelling with earth observations is an effective method for monitoring biomass removals and quantifying management impacts on field-scale C balance, without the need for frequent and laborious ground measurements. This approach can support the delivery of more robust national greenhouse gas (GHG) accounting that takes account of grassland vegetation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
jingyi应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
星星发布了新的文献求助10
3秒前
一切顺利发布了新的文献求助10
5秒前
面朝大海发布了新的文献求助10
6秒前
xuxuxuuxuxux完成签到,获得积分10
7秒前
wangndk完成签到,获得积分10
8秒前
丘比特应助Cam采纳,获得10
9秒前
自觉南风完成签到,获得积分10
10秒前
11秒前
Bao完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
石头发布了新的文献求助10
15秒前
17秒前
xiaoyan完成签到,获得积分10
19秒前
搞怪的明辉完成签到,获得积分10
20秒前
自强不息完成签到,获得积分10
21秒前
22秒前
fhkq完成签到,获得积分10
25秒前
拼搏半梦完成签到,获得积分10
25秒前
完美世界应助积极的初南采纳,获得10
26秒前
elerain完成签到,获得积分10
26秒前
落忆完成签到 ,获得积分10
27秒前
煎饼果子完成签到 ,获得积分10
29秒前
orixero应助石头采纳,获得10
30秒前
吉吉完成签到 ,获得积分10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217424
求助须知:如何正确求助?哪些是违规求助? 3751490
关于积分的说明 11796171
捐赠科研通 3416241
什么是DOI,文献DOI怎么找? 1874990
邀请新用户注册赠送积分活动 928798
科研通“疑难数据库(出版商)”最低求助积分说明 837836