Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges

风电预测 风力发电 计算机科学 人工神经网络 电力系统 算法 机器学习 随机性 启发式 功率(物理) 数据挖掘 人工智能 工程类 数学 统计 物理 量子力学 电气工程
作者
Peng Lu,Lin Ye,Yongning Zhao,Binhua Dai,Ming Pei,Yong Tang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:301: 117446-117446 被引量:133
标识
DOI:10.1016/j.apenergy.2021.117446
摘要

Abstract The integration of large-scale wind power introduces issues in modern power systems operations due to its strong randomness and volatility. These issues can be resolved via wind power forecasting that can provide comprehensive future information about wind power uncertainties. This paper presents a timely and comprehensive review of meta-heuristic algorithms in the framework of wind power forecasting. The framework is based on the auxiliary layer, forecasting base layer, and core layer. The auxiliary layer, such as the data-decomposition layer, decomposes the wind power time series into many relatively stationary subseries, and uses prediction models, including artificial neural networks (ANNs) and machine learning (ML). The core layer is based on meta-heuristic algorithms, which include evolutionary-based algorithms, physics-based algorithms, human-based algorithms, swarm-based algorithms, hybrid algorithms, and multi-objective optimization algorithms. These algorithms aim to search for the optimal solutions under constraints, which is highly significant for optimizing the key parameters of the prediction models. Besides, multiple error evaluation metrics, e.g., deterministic, uncertainty, and testing methods used in the field of wind power prediction are described. A quantitative analysis focusing on their advantages, disadvantages, forecasting accuracy, and computational costs are also provided. Finally, a few open research issues and trends related to the topic are discussed, which can contribute to improving the understanding of each wind power forecasting method. In general, this review paper provides valuable insights to wind power engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大师现在完成签到,获得积分10
3秒前
5秒前
路在脚下完成签到 ,获得积分10
6秒前
hileborn完成签到,获得积分10
7秒前
夏小川完成签到,获得积分10
8秒前
9秒前
zmy完成签到 ,获得积分10
11秒前
冰凌心恋完成签到,获得积分10
12秒前
冰魂应助Arina采纳,获得10
12秒前
平淡盼旋完成签到,获得积分10
13秒前
Heidi完成签到,获得积分10
13秒前
Aaron发布了新的文献求助10
13秒前
陈严完成签到,获得积分10
13秒前
平淡盼旋发布了新的文献求助10
16秒前
18秒前
冬雾完成签到 ,获得积分10
19秒前
20秒前
24秒前
hannah发布了新的文献求助10
26秒前
文一完成签到,获得积分10
26秒前
pinging完成签到,获得积分10
28秒前
sunny心晴完成签到 ,获得积分10
29秒前
czz完成签到,获得积分10
31秒前
再夕予发布了新的文献求助10
31秒前
热心乌完成签到,获得积分0
32秒前
成就的雪莲完成签到,获得积分10
32秒前
科研通AI5应助hannah采纳,获得10
33秒前
默默板凳完成签到 ,获得积分10
36秒前
喔喔完成签到,获得积分10
36秒前
壮观的寒松完成签到,获得积分10
39秒前
manman完成签到,获得积分10
41秒前
广州小肥羊完成签到 ,获得积分10
42秒前
在望完成签到,获得积分10
43秒前
小鲤鱼完成签到,获得积分10
43秒前
44秒前
47秒前
48秒前
明月照我程完成签到,获得积分10
48秒前
鱼会淹死吗完成签到,获得积分10
49秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801417
求助须知:如何正确求助?哪些是违规求助? 3347081
关于积分的说明 10331970
捐赠科研通 3063389
什么是DOI,文献DOI怎么找? 1681627
邀请新用户注册赠送积分活动 807639
科研通“疑难数据库(出版商)”最低求助积分说明 763825