An automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional network

计算机科学 肝癌 人工智能 体积热力学 计算机断层摄影术 光学(聚焦) 模式识别(心理学) 数据集 卷积(计算机科学) 癌症检测 癌症 核医学 放射科 计算机视觉 医学 人工神经网络 物理 内科学 光学 量子力学
作者
Amandeep Kaur,Ajay Pal Singh Chauhan,Ashwani Kumar Aggarwal
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:186: 115686-115686 被引量:35
标识
DOI:10.1016/j.eswa.2021.115686
摘要

An early detection and diagnosis of liver cancer can help the radiation therapist in choosing the target area and the amount of radiation dose to be delivered to the patients. The radiologists usually spend a lot of time in selecting the most relevant slices from thousands of scans, which are usually obtained from multi-slice CT scanners. The purpose of this paper multi-organ classification of 3D CT images of liver cancer suspected patients by convolution network. A dataset consisting of 63503 CT images of liver cancer patients taken from The Cancer Imaging Archive (TCIA) has been used to validate the proposed method. The method is a CNN for classification of CT liver cancer images. The classification results in terms of accuracy, precision, sensitivity, specificity, true positive rate, false negative rate, and F1 score have been computed. The results manifest a high validation accuracy of 99.1%, when convolution network is trained with the data augmented volume slices as compared to accuracy of 98.7% with that obtained original volume slices. The overall test accuracy for data augmented volume slice dataset is 93.1% superior to other volume slices. The main contribution of this work is that it will help the radiation therapist to focus on a small subset of CT image data. This is achieved by segregating the whole set of 63503 CT images into three categories based on the likelihood of the spread of cancer to other organs in liver cancer suspected patients. Consequently, only 19453 CT images had liver visible in them, making rest of 44050 CT images less relevant for liver cancer detection. The proposed method will help in the rapid diagnosis and treatment of liver cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
yang完成签到,获得积分10
6秒前
乐乐应助俭朴的猫咪采纳,获得10
6秒前
9秒前
甜美的兔子完成签到,获得积分10
13秒前
14秒前
bkagyin应助迅速的八宝粥采纳,获得10
15秒前
15秒前
Nick完成签到,获得积分10
16秒前
慎ming发布了新的文献求助80
18秒前
zyc发布了新的文献求助10
19秒前
Sicily发布了新的文献求助10
19秒前
21秒前
NexusExplorer应助xgx984采纳,获得10
22秒前
23秒前
Emper发布了新的文献求助10
26秒前
你博哥完成签到 ,获得积分10
28秒前
欢呼流沙发布了新的文献求助10
28秒前
在水一方应助Sicily采纳,获得10
30秒前
Ava应助爱撒娇的凝安采纳,获得10
32秒前
33秒前
34秒前
顾矜应助威士忌www采纳,获得10
35秒前
科研通AI5应助谦让忆文采纳,获得10
37秒前
herschelwu发布了新的文献求助10
37秒前
忧伤的飞机完成签到,获得积分10
37秒前
38秒前
111完成签到 ,获得积分10
38秒前
38秒前
39秒前
39秒前
子非鱼发布了新的文献求助10
39秒前
40秒前
纯情的天奇完成签到 ,获得积分10
42秒前
105发布了新的文献求助30
42秒前
43秒前
43秒前
44秒前
浩浩发布了新的文献求助10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669