Machine learning and optimization models for supplier selection and order allocation planning

需求预测 计算机科学 选择(遗传算法) 供应链 运筹学 订单(交换) 供应链管理 约束(计算机辅助设计) 数学优化 人工智能 经济 业务 营销 工程类 财务 机械工程 数学
作者
Samiul Islam,Saman Hassanzadeh Amin,Leslie J. Wardley
出处
期刊:International Journal of Production Economics [Elsevier BV]
卷期号:242: 108315-108315 被引量:61
标识
DOI:10.1016/j.ijpe.2021.108315
摘要

Supplier selection and order allocation have significant roles in supply chain management. These processes become major challenges when the demand is uncertain. This research presents a new two-stage solution approach for supplier selection and order allocation planning where a forecasting procedure is integrated with an optimization model. In the first stage, the demand is forecasted to handle the demand vagueness. A novel Relational Regressor Chain method is introduced to determine the future demand, which is compared with the Holt's Linear Trend and the Auto-Regressive Integrated Moving Average methods to ensure the forecasting accuracy. The forecasted demand is then fed to the second stage where a multi-objective programming model is developed to identify suitable suppliers and order quantities from each supplier. Weighted-sum and ε-constraint methods are utilized to obtain the efficient solutions. To our knowledge, this paper is the first study that has integrated demand forecasting with the supplier selection and order allocation planning. A real dataset from a Canadian food supply network is used to examine the results of the forecasting methods and to determine the orders allocated to each supplier. The results of the forecasting methods show that the proposed Relational Regressor Chain method can forecast demand with a higher precision than the other forecasting methods considered in this paper. It is also evident from the results that the selection of the forecasting methods may have impact on both the selection of suppliers and the orders allocated to them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
an完成签到,获得积分10
3秒前
4秒前
6秒前
拉长的南松完成签到 ,获得积分10
8秒前
10秒前
10秒前
12秒前
14秒前
hh完成签到,获得积分10
15秒前
16秒前
HEIKU应助葳葳采纳,获得10
18秒前
sohee发布了新的文献求助10
21秒前
chinaclfeng完成签到,获得积分10
23秒前
丁鹏笑完成签到 ,获得积分0
25秒前
万能图书馆应助冷静无声采纳,获得20
26秒前
呵呵贺哈完成签到 ,获得积分10
28秒前
修士完成签到 ,获得积分10
31秒前
31秒前
33秒前
Moonber完成签到,获得积分10
34秒前
可可应助李蕙芯采纳,获得10
37秒前
38秒前
小荷发布了新的文献求助10
38秒前
写不出来发布了新的文献求助10
41秒前
42秒前
43秒前
44秒前
千空发布了新的文献求助10
44秒前
46秒前
manmanzhong发布了新的文献求助10
48秒前
liu完成签到,获得积分10
49秒前
小蘑菇应助Lee采纳,获得10
50秒前
51秒前
线条完成签到 ,获得积分10
52秒前
wuniuniu发布了新的文献求助10
52秒前
53秒前
Hopper完成签到,获得积分10
53秒前
sc发布了新的文献求助10
55秒前
bcliu9920发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778351
求助须知:如何正确求助?哪些是违规求助? 3323953
关于积分的说明 10216860
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667919
邀请新用户注册赠送积分活动 798427
科研通“疑难数据库(出版商)”最低求助积分说明 758385