材料科学
压电系数
结构精修
分析化学(期刊)
复合材料
陶瓷
电介质
电阻率和电导率
温度系数
大气温度范围
矿物学
晶体结构
热力学
结晶学
化学
电气工程
光电子学
色谱法
工程类
物理
作者
Ansu Kumar Roy,K. Prasad,Ashutosh Prasad
摘要
Lead-free piezoelectric perovskite ceramic (Bi0.5Na0.5)0.95Ba0.05TiO3 (BNT-BT0.05), prepared by conventional high temperature solid state reaction technique at 1160?C/3h in air atmosphere, is investigated by impedance and modulus spectroscopy in a temperature range 35-400?C, over a frequency range 100 Hz-1 MHz. The crystal structure, microstructure, and piezoelectric properties as well as the AC conductivity of the sample were studied. Powder X-ray diffraction pattern derived from the resulting data at the room temperature subjected to Rietveld refinements and Williamson-Hall plot analysis confirmed the formation of phase pure compound with monoclinic unit cells having a crystallite-size ~33.8 nm. Observed SEM micrograph showed a uniform distribution of grains inside the sample having an average grain size ~3 mm. Longitudinal piezoelectric charge coefficient of the sample poled under a DC electric field of ~ 2.5 kV/mm at 80?C in a silicone oil bath was found to be equal to 95 pC/N. The frequency and temperature dependent electrical data analyzed in the framework of AC conductivity, complex impedance as well as electric modulus formalisms showed negative temperature coefficient of resistance (NTCR) character of the material and the dielectric relaxation in the material to be of non-Debye type. Double power law for the frequency-dependence of AC conductivity and Jump Relaxation Model (JRM) were found to explain successfully the mechanism of charge transport in BNT-BT0.05.
科研通智能强力驱动
Strongly Powered by AbleSci AI