Intracellular Uptake and Toxicity of Ag and CuO Nanoparticles: A Comparison Between Nanoparticles and their Corresponding Metal Ions

毒性 纳米毒理学 银纳米粒子 纳米颗粒 生物物理学 细胞内 化学 彗星试验 台盼蓝 纳米银 透射电子显微镜 核化学 材料科学 DNA损伤 纳米技术 细胞 纳米- 生物化学 生物 DNA 有机化学 复合材料
作者
Pontus Cronholm,Hanna L. Karlsson,Jonas Hedberg,Troy A. Lowe,Lina Winnberg,Karine Elihn,Inger Odnevall Wallinder,Lennart Möller
出处
期刊:Small [Wiley]
卷期号:9 (7): 970-982 被引量:309
标识
DOI:10.1002/smll.201201069
摘要

Abstract An increased understanding of nanoparticle toxicity and its impact on human health is essential to enable a safe use of nanoparticles in our society. The aim of this study is to investigate the role of a Trojan horse type mechanism for the toxicity of Ag‐nano and CuO‐nano particles and their corresponding metal ionic species (using CuCl 2 and AgNO 3 ), i.e., the importance of the solid particle to mediate cellular uptake and subsequent release of toxic species inside the cell. The human lung cell lines A549 and BEAS‐2B are used and cell death/membrane integrity and DNA damage are investigated by means of trypan blue staining and the comet assay, respectively. Chemical analysis of the cellular dose of copper and silver is performed using atomic absorption spectroscopy. Furthermore, transmission electron microscopy, laser scanning confocal microscopy, and confocal Raman microscopy are employed to study cellular uptake and particle‐cell interactions. The results confirm a high uptake of CuO‐nano and Ag‐nano compared to no, or low, uptake of the soluble salts. CuO‐nano induces both cell death and DNA damage whereas CuCl 2 induces no toxicity. The opposite is observed for silver, where Ag‐nano does not cause any toxicity, whereas AgNO 3 induces a high level of cell death. In conclusion: CuO‐nano toxicity is predominantly mediated by intracellular uptake and subsequent release of copper ions, whereas no toxicity is observed for Ag‐nano due to low release of silver ions within short time periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
California完成签到 ,获得积分10
1秒前
jinxiao123发布了新的文献求助10
1秒前
打打应助Qenyo采纳,获得10
1秒前
17完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
青蛙打不过小熊应助西米采纳,获得10
4秒前
5秒前
李盛华发布了新的文献求助30
5秒前
脑洞疼应助秋之月采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
吃不完的玉米完成签到,获得积分10
6秒前
7秒前
7秒前
Good_小鬼发布了新的文献求助10
8秒前
9秒前
9秒前
wzx发布了新的文献求助10
10秒前
10秒前
11秒前
栗子发布了新的文献求助10
11秒前
PALMS发布了新的文献求助10
11秒前
11秒前
lidapan完成签到,获得积分10
11秒前
11秒前
12秒前
lokeve关注了科研通微信公众号
12秒前
12秒前
领导范儿应助sjr123采纳,获得10
12秒前
12秒前
12秒前
淡定自中发布了新的文献求助10
13秒前
13秒前
心灵手巧发布了新的文献求助10
13秒前
16秒前
cici发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194866
求助须知:如何正确求助?哪些是违规求助? 4377064
关于积分的说明 13631202
捐赠科研通 4232285
什么是DOI,文献DOI怎么找? 2321532
邀请新用户注册赠送积分活动 1319647
关于科研通互助平台的介绍 1270054