机器人学
机器人
机电一体化
稳健性(进化)
人工智能
冗余(工程)
控制工程
扭矩
工程类
计算机科学
生物化学
化学
物理
可靠性工程
基因
热力学
作者
Alin Albu‐Schäffer,Sami Haddadin,Christian Ott,Andreas Stemmer,Thomas Wimböck,G. Hirzinger
出处
期刊:Industrial Robot-an International Journal
[Emerald Publishing Limited]
日期:2007-08-18
卷期号:34 (5): 376-385
被引量:601
标识
DOI:10.1108/01439910710774386
摘要
Purpose The paper seeks to present a new generation of torque‐controlled light‐weight robots (LWR) developed at the Institute of Robotics and Mechatronics of the German Aerospace Center. Design/methodology/approach An integrated mechatronic design approach for LWR is presented. Owing to the partially unknown properties of the environment, robustness of planning and control with respect to environmental variations is crucial. Robustness is achieved in this context through sensor redundancy and passivity‐based control. In the DLR root concept, joint torque sensing plays a central role. Findings In order to act in unstructured environments and interact with humans, the robots have design features and control/software functionalities which distinguish them from classical robots, such as: load‐to‐weight ratio of 1:1, torque sensing in the joints, active vibration damping, sensitive collision detection, compliant control on joint and Cartesian level. Practical implications The DLR robots are excellent research platforms for experimentation of advanced robotics algorithms. Space and medical robotics are further areas for which these robots were designed and hopefully will be applied within the next years. Potential industrial application fields are the fast automatic assembly as well as manufacturing activities done in cooperation with humans (industrial robot assistant). The described functionalities are of course highly relevant also for the potentially huge market of service robotics. The LWR technology was transferred to KUKA Roboter GmbH, which will bring the first arms on the market in the near future. Originality/value This paper introduces a new type of LWR with torque sensing in each joint and describes a consistent approach for using these sensors for manipulation in human environments. To the best of one's knowledge, the first systematic experimental evaluation of possible injuries during robot‐human crashes using standardized testing facilities is presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI