亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human-computer interaction for virtual-real fusion

人机交互 计算机科学 可穿戴计算机 虚拟现实 感知 认知 认知建筑学 机器人学 人机交互 虚拟实境 人工智能 机器人 心理学 神经科学 嵌入式系统
作者
Jianhua Tao,Jiangtao Gong,Nan Gao,Siwei Fu,Shan Liang,Chun Yu
出处
期刊:Journal of Image and Graphics [University of Portsmouth]
卷期号:28 (6): 1513-1542 被引量:6
标识
DOI:10.11834/jig.230020
摘要

面向虚实融合的人机交互涉及计算机科学、认知心理学、人机工程学、多媒体技术和虚拟现实等领域,旨在提高人机交互的效率,同时响应人类认知与情感的需求,在办公教育、机器人和虚拟/增强现实设备中都有广泛应用。本文从人机交互涉及感知计算、人与机器人交互及协同、个性化人机对话和数据可视化等4个维度系统阐述面向虚实融合人机交互的发展现状。对国内外研究现状进行对比,展望未来的发展趋势。本文认为兼具可迁移与个性化的感知计算、具备用户行为深度理解的人机协同、用户自适应的对话系统等是本领域的重要研究方向。;Virtual-real human-computer interaction(VR-HCI) is an interdisciplinary field that encompasses human and computer interactions to address human-related cognitive and emotional needs. This interdisciplinary knowledge integrates domains such as computer science, cognitive psychology, ergonomics, multimedia technology, and virtual reality. With the advancement of big data and artificial intelligence, VR-HCI benefits industries like education, healthcare, robotics, and entertainment, and is increasingly recognized as a key supporting technology for metaverse-related development. In recent years, machine learning-based human cognitive and emotional analysis has evolved, particularly in applications like robotics and wearable interaction devices. As a result, VR-HCI has focused on the challenging issue of creating intelligent and anthropomorphic interaction systems. This literature review examines the growth of VR-HCI from four aspects:perceptual computing, human-machine interaction and coordination, human-computer dialogue interaction, and data visualization. Perceptual computing aims to model human daily life behavior, cognitive processes, and emotional contexts for personalized and efficient human-computer interactions. This discussion covers three perceptual aspects related to pathways, objects, and scenes. Human-machine interaction scenarios involve virtual and real-world integration and perceptual pathways, which are divided into primary perception types:visual-based, sensor-based, and wireless non-contact. Object-based perception is subdivided into personal and group contexts, while scene-based perception is subdivided into physical behavior and cognitive contexts. Human-machine interaction primarily encompasses technical disciplines such as mechanical and electrical engineering, computer and control science, artificial intelligence, and other related arts or humanistic disciplines like psychology and design. Human-robot interaction can be categorized by functional mechanisms into 1) collaborative operation robots, 2) service and assistance robots, and 3) social, entertainment, and educational robots. Key modules in human-computer dialogue interaction systems include speech recognition, speaker recognition, dialogue system, and speech synthesis. The level of intelligence in these interaction systems can be further enhanced by considering users' inherent characteristics, such as speech pronunciation, preferences, emotions, and other attributes. For human-machine interaction, it mainly involves technical disciplines in relevant to mechanical and electrical engineering, computer and control science, and artificial intelligence, as well as other related arts or humanistic disciplines like psychology and design. Humans-robots interaction can be segmented into three categories in terms of its functional mechanism:1) collaborative operation robots, 2) service and assistance robots, and 3) social, entertainment and educational robots. For human-computer dialogue interaction, the system consists of such key modules like speech recognition, speaker recognition, dialogue system, and speech synthesis. The microphone sensor can pick up the speech signal, which is then converted to text information through the speech recognition module. The dialogue system can process the text information, understand the user's intention, and generates a reply. Finally, the speech-synthesized module can convert the reply information into speech information, completing the interaction process. In recent years, the level of intelligence of the interaction system can be further improved by combining users' inherent characteristics such as speech pronunciation, preferences, emotions, and other characteristics, optimizing the various modules of the interaction system. For data transformation and visualization, it is benched for performing data cleaning tasks on tabular data, and various tools in R and Python can perform these tasks as well. Many software systems have developed graphical user interfaces to assist users in completing data transformation tasks, such as Microsoft Excel, Tableau Prep Builder, and OpenRefine. Current recommendation-based algorithms interactive systems are beneficial for users transform data easily. Researchers have also developed tools that can transform network structures. We analyze its four aspects of 1) interactive data transformation, 2) data transformation visualization, 3) data table visual comparison, and 4) code visualization in human-computer interaction systems. We identify several future research directions in VR-HCI, namely 1) designing generalized and personalized perceptual computing, 2) building human-machine cooperation with a deep understanding of user behavior, and 3) expanding user-adaptive dialogue systems. For perceptual computing, it still lacks joint perception of multiple devices and individual differences in human behavior perception. Furthermore, most perceptual research can use generalized models, neglecting individual differences, resulting in lower perceptual accuracy, making it difficult to apply in actual settings. Therefore, future perceptual computing research trends are required for multimodal, transferable, personalized, and scalable research. For human-machine interaction and coordination, a systematic approach is necessary for constructing a design for human-machine interaction and collaboration. This approach requires in-depth research on user understanding, construction of interaction datasets, and long-term user experience. For human-computer dialogue interaction, current research mostly focuses on open-domain systems, which use pre-trained models to improve modeling accuracy for emotions, intentions, and knowledge. Future research should be aimed at developing more intelligent human-machine conversations that cater to individual user needs. For data transformation and visualization in HCI, the future directions can be composed of two parts:1) the intelligence level of data transformation can be improved through interaction for individual data workers on several aspects, e. g., appropriate algorithms for multiple types of data, recommendations for consistent user behavior and real-time analysis to support massive data. 2) The focus is on the integration of data transformation and visualization among multiple users, including designing collaborative mechanisms, resolving conflicts in data operation, visualizing complex data transformation codes, evaluating the effectiveness of various visualization methods, and recording and displaying multiple human behaviors. In summary, the development of VR-HCI can provide new opportunities and challenges for human-computer interaction towards Metaverse, which has the potential to seamlessly integrate virtual and real worlds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
十二倍根号二完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
SW完成签到,获得积分10
51秒前
CipherSage应助SW采纳,获得10
1分钟前
1分钟前
SW发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
研小小小小白完成签到,获得积分10
2分钟前
111111111发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
sofardli发布了新的文献求助20
3分钟前
3分钟前
nanali19发布了新的文献求助10
3分钟前
3分钟前
nanali19完成签到,获得积分10
3分钟前
万能图书馆应助sofardli采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
曦麟完成签到 ,获得积分10
4分钟前
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
4分钟前
Lin发布了新的文献求助10
4分钟前
4分钟前
SCINEXUS完成签到,获得积分0
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
老迟到的梦旋完成签到 ,获得积分10
5分钟前
6分钟前
负责以山完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264