Quantification of wetland vegetation communities features with airborne AVIRIS-NG, UAVSAR, and UAV LiDAR data in Peace-Athabasca Delta

激光雷达 环境科学 湿地 遥感 植被(病理学) 永久冻土 地理 地质学 生态学 海洋学 医学 生物 病理
作者
Chao Wang,Tamlin M. Pavelsky,Ethan D. Kyzivat,Fenix Garcia‐Tigreros,E. Podest,Fangfang Yao,Xiao Yang,Shuai Zhang,Conghe Song,Theodore Langhorst,Wayana Dolan,Martin Kurek,Merritt E. Harlan,L. C. Smith,David Butman,Robert G. M. Spencer,C. J. Gleason,Kimberly P. Wickland,Robert G. Striegl,Daniel L. Peters
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:294: 113646-113646 被引量:1
标识
DOI:10.1016/j.rse.2023.113646
摘要

Arctic-boreal wetlands, important ecosystems for biodiversity and ecological services, are experiencing hydrological changes including permafrost thaw, earlier snowmelt, and increased wildfire susceptibility. These changes are affecting wetland productivity, species diversity, and biogeochemical cycles. However, given the diverse forms and structures of wetland vegetation communities, traditional wetland maps generated from lower spatial and spectral resolution satellite imagery lack community-level vegetation classification and miss spatially complex patterns. In this study, we built a cloud-based workflow to map wetland vegetation community of the Peace-Athabasca Delta (PAD), Canada, by leveraging high-resolution (5-m) airborne multi-sensor datasets, namely NASA's Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), and a historical LiDAR archive. Validation of our classifications using ground references indicates that classifications derived from AVIRIS-NG have higher accuracies (≥87.9%) than either UAVSAR (65.6%) or LiDAR (75.9%) for mapping wetland vegetation communities. We also show improved classification accuracy when combining information from multiple sensors. In particular, incorporating AVIRIS-NG and UAVSAR datasets substantially reduced omission errors of wet graminoid and wet shrub classes from 29.6% to 20.5% and from 10.8% to 7.5%, respectively. Combining AVIRIS-NG and LiDAR datasets further improves overall accuracy (+2.2%) for most classifications, especially emergent vegetation, wet graminoid, and wet shrub. The best performing model, using features derived from all three sensors, achieved an overall accuracy of 93.5%. The framework established here can be used to leverage extensive airborne AVIRIS-NG and UAVSAR datasets collected across Alaska and northwest Canada to understand the spatial distribution of Arctic-Boreal wetland vegetation communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiulong发布了新的文献求助10
刚刚
半眠日记发布了新的文献求助10
2秒前
科研通AI2S应助hahajiang采纳,获得10
5秒前
科研通AI2S应助zone采纳,获得10
5秒前
NexusExplorer应助蔡继海采纳,获得10
7秒前
小手冰凉发布了新的文献求助10
8秒前
科目三应助郭宇采纳,获得10
9秒前
半眠日记完成签到,获得积分20
11秒前
15秒前
慕青应助鹿友绿采纳,获得10
18秒前
18秒前
19秒前
大个应助凉白开采纳,获得10
19秒前
RW乾完成签到,获得积分10
21秒前
21秒前
21秒前
liusoojoo完成签到,获得积分10
23秒前
24秒前
xin发布了新的文献求助10
24秒前
日上三竿完成签到,获得积分10
25秒前
25秒前
LL发布了新的文献求助10
25秒前
小手冰凉完成签到,获得积分20
27秒前
激昂的野猪骑士完成签到,获得积分10
27秒前
waver发布了新的文献求助10
28秒前
冰魂应助明天会更美好采纳,获得10
29秒前
阿尔弗雷德完成签到 ,获得积分10
30秒前
greatsnow发布了新的文献求助10
31秒前
缓慢思枫发布了新的文献求助10
31秒前
万能图书馆应助一北采纳,获得10
33秒前
LL完成签到,获得积分10
36秒前
华仔应助小五屁孩儿采纳,获得10
38秒前
香蕉觅云应助小小的飞机采纳,获得10
39秒前
tkxfy完成签到,获得积分10
40秒前
科研通AI5应助LL采纳,获得10
41秒前
41秒前
加减乘除发布了新的文献求助10
41秒前
我爱学习完成签到 ,获得积分10
42秒前
坦率的访彤完成签到,获得积分10
44秒前
共享精神应助karcorl采纳,获得30
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976