亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-based multimodal sentiment analysis and emotion recognition using deep neural networks

计算机科学 判别式 模式 情绪分析 人工智能 模态(人机交互) 特征(语言学) 可视化 特征提取 机器学习 深度学习 模式识别(心理学) 社会科学 语言学 哲学 社会学
作者
Ajwa Aslam,Allah Bux Sargano,Zulfiqar Habib
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110494-110494 被引量:20
标识
DOI:10.1016/j.asoc.2023.110494
摘要

There has been a growing interest in multimodal sentiment analysis and emotion recognition in recent years due to its wide range of practical applications. Multiple modalities allow for the integration of complementary information, improving the accuracy and precision of sentiment and emotion recognition tasks. However, working with multiple modalities presents several challenges, including handling data source heterogeneity, fusing information, aligning and synchronizing modalities, and designing effective feature extraction techniques that capture discriminative information from each modality. This paper introduces a novel framework called "Attention-based Multimodal Sentiment Analysis and Emotion Recognition (AMSAER)" to address these challenges. This framework leverages intra-modality discriminative features and inter-modality correlations in visual, audio, and textual modalities. It incorporates an attention mechanism to facilitate sentiment and emotion classification based on visual, textual, and acoustic inputs by emphasizing relevant aspects of the task. The proposed approach employs separate models for each modality to automatically extract discriminative semantic words, image regions, and audio features. A deep hierarchical model is then developed, incorporating intermediate fusion to learn hierarchical correlations between the modalities at bimodal and trimodal levels. Finally, the framework combines four distinct models through decision-level fusion to enable multimodal sentiment analysis and emotion recognition. The effectiveness of the proposed framework is demonstrated through extensive experiments conducted on the publicly available Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset. The results confirm a notable performance improvement compared to state-of-the-art methods, attaining 85% and 93% accuracy for sentiment analysis and emotion classification, respectively. Additionally, when considering class-wise accuracy, the results indicate that the "angry" emotion and "positive" sentiment are classified more effectively than the other emotions and sentiments, achieving 96.80% and 93.14% accuracy, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lunatic发布了新的文献求助10
6秒前
Alex应助ceeray23采纳,获得200
6秒前
安史不乱完成签到,获得积分10
7秒前
阳光大山完成签到 ,获得积分10
15秒前
高兴鸿煊完成签到 ,获得积分10
17秒前
17秒前
NexusExplorer应助Lunatic采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
科研通AI2S应助ceeray23采纳,获得20
23秒前
Du完成签到,获得积分10
24秒前
24秒前
Du发布了新的文献求助10
29秒前
29秒前
33秒前
Lunatic发布了新的文献求助10
33秒前
你好棒呀完成签到,获得积分10
35秒前
满意的伊完成签到,获得积分10
38秒前
51秒前
思源应助某某采纳,获得10
53秒前
1157588380发布了新的文献求助10
54秒前
楠楠2001完成签到 ,获得积分10
55秒前
无花果应助Double采纳,获得10
57秒前
58秒前
龚幻梦完成签到,获得积分10
59秒前
1分钟前
龚幻梦发布了新的文献求助10
1分钟前
位青完成签到,获得积分10
1分钟前
Lliu完成签到,获得积分10
1分钟前
1分钟前
cccc4869发布了新的文献求助10
1分钟前
爆米花应助jojo采纳,获得10
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
1分钟前
jojo发布了新的文献求助10
1分钟前
暴走小面包完成签到 ,获得积分10
1分钟前
1分钟前
哈尔滨完成签到 ,获得积分20
1分钟前
某某发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438344
求助须知:如何正确求助?哪些是违规求助? 4549600
关于积分的说明 14220652
捐赠科研通 4470256
什么是DOI,文献DOI怎么找? 2449799
邀请新用户注册赠送积分活动 1440739
关于科研通互助平台的介绍 1417053