Enhanced Hydrogen Evolution Performance at the Lateral Interface between Two Layered Materials Predicted with Machine Learning

材料科学 接口(物质) 工程物理 纳米技术 复合材料 润湿 化学 工程类 坐滴法 有机化学
作者
Thi Hue Pham,Eunsong Kim,Kyoungmin Min,Young‐Han Shin
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (23): 27995-28007 被引量:11
标识
DOI:10.1021/acsami.3c03323
摘要

While economical and effective catalysts are required for sustainable hydrogen production, low-dimensional interfacial engineering techniques have been developed to improve the catalytic activity in the hydrogen evolution reaction (HER). In this study, we used density functional theory (DFT) calculations to measure the Gibbs free energy change (ΔGH) in hydrogen adsorption in two-dimensional lateral heterostructures (LHSs) MX2/M'X'2 (MoS2/WS2, MoS2/WSe2, MoSe2/WS2, MoSe2/WSe2, MoTe2/WSe2, MoTe2/WTe2, and WS2/WSe2) and MX2/M'X' (NbS2/ZnO, NbSe2/ZnO, NbS2/GaN, MoS2/ZnO, MoSe2/ZnO, MoS2/AlN, MoS2/GaN, and MoSe2/GaN) at several different positions near the interface. Compared to the interfaces of LHS MX2/M'X'2 and the surfaces of the monolayer MX2 and MX, the interfaces of LHS MX2/M'X' display greater hydrogen evolution reactivity due to their metallic behavior. The hydrogen absorption is stronger at the interfaces of LHS MX2/M'X', and that facilitates proton accessibility and increases the usage of catalytically active sites. Here, we develop three types of descriptors that can be used universally in 2D materials and can explain changes in ΔGH for different adsorption sites in a single LHS using only the basic information of the LHSs (type and number of neighboring atoms to the adsorption points). Using the DFT results of the LHSs and the various experimental data of atomic information, we trained machine learning (ML) models with the chosen descriptors to predict promising combinations and adsorption sites for HER catalysts among the LHSs. Our ML model achieved an R2 score of 0.951 (regression) and an F1 score of 0.749 (classification). Furthermore, the developed surrogate model was implemented to predict the structures in the test set and was based on confirmation from the DFT calculations via ΔGH values. The LHS MoS2/ZnO is the best candidate for HER among 49 candidates considered using both DFT and ML models because it has a ΔGH of −0.02 eV on top of O at the interface position and requires only −171 mV of overpotential to obtain the standard current density (10 A/cm2).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Luka应助fd163c采纳,获得50
2秒前
qwe1108完成签到 ,获得积分10
3秒前
陈预立完成签到,获得积分10
3秒前
Lucas应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
日出完成签到,获得积分10
5秒前
orixero应助伊笙采纳,获得10
6秒前
虚幻小丸子完成签到 ,获得积分10
9秒前
爱学习的GGbond完成签到,获得积分10
10秒前
随便完成签到 ,获得积分10
10秒前
12秒前
学不懂完成签到,获得积分10
12秒前
12秒前
12秒前
xuxuxuxuxu发布了新的文献求助30
13秒前
13秒前
14秒前
15秒前
3080完成签到 ,获得积分10
16秒前
16秒前
yangching发布了新的文献求助10
17秒前
小四喜发布了新的文献求助30
17秒前
浩二完成签到,获得积分10
18秒前
smart完成签到,获得积分10
18秒前
暗月皇发布了新的文献求助10
19秒前
白白白发布了新的文献求助10
20秒前
平淡雪枫完成签到 ,获得积分10
20秒前
浩二发布了新的文献求助10
21秒前
宁annie完成签到,获得积分10
22秒前
Joeswith完成签到,获得积分10
22秒前
吉祥如意顺顺利利完成签到,获得积分10
23秒前
suiyi发布了新的文献求助10
23秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781094
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227563
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669546
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734