Intelligent design of display space layout based on two-stage deep learning network

计算机科学 能见度 可用性 匹配(统计) 人工智能 空格(标点符号) 深度学习 机器学习 计算机工程 人机交互 数学 统计 操作系统 光学 物理
作者
Jiaxing Liu,Yongchao Zhu,Yin Cui
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
卷期号:23 (6): 3347-3362
标识
DOI:10.3233/jcm-226912
摘要

In an age of big data and information overload, recommendation systems have evolved rapidly. Throughout the traditional design of interior spaces, the specialised nature of the work and the high rate of human involvement has led to high costs. With the continuous development of artificial intelligence technology, it provides a favourable environment for reducing the development cost of the system. This study proposes a two-stage modelling scheme based on deep learning networks for the intelligent design of display space layouts, divided into two parts: matching and layout, which greatly improves design efficiency. The research results show that through comparison tests, its prediction accuracy reaches more than 80%, which can well meet the matching requirements of household products. The training number of Epochs is between 15 and 30, its training curve tends to saturate and the best accuracy can reach 100%, while the running time of the hybrid algorithm proposed in this study is only 20.716 s, which is significantly better compared with other algorithms. The proposed hybrid algorithm has a running time of only 20.716 s, which is significantly better than other algorithms. The approach innovatively combines deep learning technology with computer-aided design (CAD), enabling designers to automatically generate display space layouts with good visibility and usability based on complex design constraints. This study presents an innovative application of the research methodology by combining quantitative and qualitative methods to analyse the data. The application of both methods provides a more comprehensive understanding of the problem under study and provides insight into the key factors that influence the results. The findings of this study can provide useful insights for policy makers and practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zengyiqiao完成签到,获得积分10
1秒前
jin发布了新的文献求助10
2秒前
NexusExplorer应助123采纳,获得10
3秒前
调皮傲易完成签到 ,获得积分10
3秒前
4秒前
小白菜完成签到,获得积分10
5秒前
猫臭完成签到,获得积分10
5秒前
水逆消退发布了新的文献求助10
8秒前
JamesPei应助CC采纳,获得10
9秒前
小h完成签到,获得积分10
9秒前
33ovo完成签到 ,获得积分10
10秒前
11秒前
11秒前
13秒前
青柏发布了新的文献求助10
13秒前
fjl发布了新的文献求助10
14秒前
Stata@R发布了新的文献求助10
14秒前
秋雁风完成签到,获得积分10
14秒前
称心如意完成签到 ,获得积分10
15秒前
科研通AI5应助研友_nER2JZ采纳,获得200
16秒前
房山芙完成签到,获得积分10
17秒前
张牧之发布了新的文献求助10
18秒前
fjl完成签到,获得积分10
18秒前
草木青发布了新的文献求助10
20秒前
hang完成签到,获得积分10
21秒前
22秒前
故意的青荷完成签到,获得积分10
24秒前
24秒前
25秒前
顾矜应助Stata@R采纳,获得10
26秒前
26秒前
Touching完成签到 ,获得积分10
27秒前
28秒前
旅人发布了新的文献求助10
29秒前
CC发布了新的文献求助10
29秒前
29秒前
~~完成签到,获得积分10
29秒前
科研通AI5应助突突突采纳,获得10
29秒前
马良完成签到 ,获得积分10
30秒前
John完成签到 ,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096