A Precision Health Service for Chronic Diseases: Development and Cohort Study Using Wearable Device, Machine Learning, and Deep Learning

可穿戴计算机 计算机科学 深度学习 人工智能 可穿戴技术 队列 机器学习 医学 病理 嵌入式系统
作者
Chia‐Tung Wu,Ssu-Ming Wang,Yi-En Su,Tsung-Ting Hsieh,Pei-Chen Chen,Yu‐Chieh Cheng,Tzu-Wei Tseng,Wei-Sheng Chang,Chang-Shinn Su,Lu-Cheng Kuo,Jung‐Yien Chien,Feipei Lai
出处
期刊:IEEE Journal of Translational Engineering in Health and Medicine [Institute of Electrical and Electronics Engineers]
卷期号:10: 1-14 被引量:26
标识
DOI:10.1109/jtehm.2022.3207825
摘要

This paper presents an integrated and scalable precision health service for health promotion and chronic disease prevention. Continuous real-time monitoring of lifestyle and environmental factors is implemented by integrating wearable devices, open environmental data, indoor air quality sensing devices, a location-based smartphone app, and an AI-assisted telecare platform. The AI-assisted telecare platform provided comprehensive insight into patients' clinical, lifestyle, and environmental data, and generated reliable predictions of future acute exacerbation events. All data from 1,667 patients were collected prospectively during a 24-month follow-up period, resulting in the detection of 386 abnormal episodes. Machine learning algorithms and deep learning algorithms were used to train modular chronic disease models. The modular chronic disease prediction models that have passed external validation include obesity, panic disorder, and chronic obstructive pulmonary disease, with an average accuracy of 88.46%, a sensitivity of 75.6%, a specificity of 93.0%, and an F1 score of 79.8%. Compared with previous studies, we establish an effective way to collect lifestyle, life trajectory, and symptom records, as well as environmental factors, and improve the performance of the prediction model by adding objective comprehensive data and feature selection. Our results also demonstrate that lifestyle and environmental factors are highly correlated with patient health and have the potential to predict future abnormal events better than using only questionnaire data. Furthermore, we have constructed a cost-effective model that needs only a few features to support the prediction task, which is helpful for deploying real-world modular prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
piper完成签到,获得积分10
刚刚
PICC发布了新的文献求助30
1秒前
Joyj99发布了新的文献求助10
1秒前
安可瓶子完成签到,获得积分10
1秒前
悦耳的真完成签到,获得积分10
1秒前
小李发布了新的文献求助30
1秒前
涛1118发布了新的文献求助10
1秒前
小光guang发布了新的文献求助10
2秒前
2秒前
霸气的水池关注了科研通微信公众号
3秒前
诱导效应完成签到,获得积分10
4秒前
4秒前
leaolf应助宫城百事顺采纳,获得10
6秒前
Yasing完成签到,获得积分10
7秒前
孙伟健发布了新的文献求助10
7秒前
李爱国应助一颗烂番茄采纳,获得10
8秒前
发嗲的黑夜完成签到,获得积分10
8秒前
huangdq6完成签到 ,获得积分10
9秒前
自由完成签到,获得积分10
9秒前
平常的夏菡完成签到 ,获得积分10
10秒前
liu完成签到,获得积分10
10秒前
Pises完成签到,获得积分10
10秒前
大强完成签到,获得积分10
10秒前
medaW发布了新的文献求助20
10秒前
11秒前
11秒前
花开hhhhhhh发布了新的文献求助10
12秒前
14秒前
15秒前
Mazhuang发布了新的文献求助10
15秒前
wqy完成签到 ,获得积分10
16秒前
YU完成签到 ,获得积分10
16秒前
16秒前
科研通AI5应助执着水杯采纳,获得30
17秒前
高数数完成签到 ,获得积分10
17秒前
璐宝完成签到,获得积分10
17秒前
星辰大海应助高兴的灰狼采纳,获得10
18秒前
复杂的茉莉完成签到,获得积分10
18秒前
18秒前
紫金发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4757949
求助须知:如何正确求助?哪些是违规求助? 4100181
关于积分的说明 12686657
捐赠科研通 3814827
什么是DOI,文献DOI怎么找? 2106043
邀请新用户注册赠送积分活动 1130681
关于科研通互助平台的介绍 1009005