RFAConv: Innovating Spatial Attention and Standard Convolutional Operation

计算机科学 卷积神经网络 感受野 光学(聚焦) 核(代数) 卷积(计算机科学) 领域(数学) 人工智能 块(置换群论) 空间分析 模式识别(心理学) 机器学习 人工神经网络 数学 统计 物理 几何学 组合数学 纯数学 光学
作者
Xin Zhang,Chen Liu,Degang Yang,Tingting Song,Yichen Ye,Ke Li,Yingze Song
出处
期刊:Cornell University - arXiv 被引量:30
标识
DOI:10.48550/arxiv.2304.03198
摘要

Spatial attention has been widely used to improve the performance of convolutional neural networks. However, it has certain limitations. In this paper, we propose a new perspective on the effectiveness of spatial attention, which is that the spatial attention mechanism essentially solves the problem of convolutional kernel parameter sharing. However, the information contained in the attention map generated by spatial attention is not sufficient for large-size convolutional kernels. Therefore, we propose a novel attention mechanism called Receptive-Field Attention (RFA). Existing spatial attention, such as Convolutional Block Attention Module (CBAM) and Coordinated Attention (CA) focus only on spatial features, which does not fully address the problem of convolutional kernel parameter sharing. In contrast, RFA not only focuses on the receptive-field spatial feature but also provides effective attention weights for large-size convolutional kernels. The Receptive-Field Attention convolutional operation (RFAConv), developed by RFA, represents a new approach to replace the standard convolution operation. It offers nearly negligible increment of computational cost and parameters, while significantly improving network performance. We conducted a series of experiments on ImageNet-1k, COCO, and VOC datasets to demonstrate the superiority of our approach. Of particular importance, we believe that it is time to shift focus from spatial features to receptive-field spatial features for current spatial attention mechanisms. In this way, we can further improve network performance and achieve even better results. The code and pre-trained models for the relevant tasks can be found at https://github.com/Liuchen1997/RFAConv.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的雪碧完成签到,获得积分10
刚刚
1秒前
3秒前
从容芮应助Wang0102采纳,获得10
6秒前
科研通AI5应助buciying采纳,获得10
7秒前
7秒前
wang发布了新的文献求助210
7秒前
裴依菲完成签到,获得积分10
8秒前
wise111发布了新的文献求助10
8秒前
俭朴依白完成签到,获得积分10
9秒前
小狗说好运来完成签到 ,获得积分10
9秒前
10秒前
JamesPei应助天真千易采纳,获得20
10秒前
林思完成签到,获得积分10
12秒前
涵泽发布了新的文献求助10
12秒前
科研通AI2S应助jlwang采纳,获得10
12秒前
13秒前
13秒前
kuiuLinvk发布了新的文献求助30
15秒前
Orange应助qqy采纳,获得10
19秒前
JIANG发布了新的文献求助30
19秒前
吴大语完成签到,获得积分10
20秒前
20秒前
22秒前
希望天下0贩的0应助涵泽采纳,获得10
23秒前
科研通AI5应助可爱山彤采纳,获得10
24秒前
蜡笔小z发布了新的文献求助10
24秒前
25秒前
ruby30完成签到,获得积分10
25秒前
kuiuLinvk完成签到,获得积分10
25秒前
顾矜应助cocoa345采纳,获得10
25秒前
科研通AI5应助小豆包采纳,获得10
26秒前
28秒前
丘比特应助yshog采纳,获得10
28秒前
XL完成签到,获得积分10
28秒前
buciying发布了新的文献求助10
29秒前
32秒前
32秒前
33秒前
热心市民应助蜡笔小z采纳,获得10
33秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451