Product Aesthetic Design: A Machine Learning Augmentation

汽车工业 计算机科学 机器学习 产品(数学) 人工智能 自编码 人工神经网络 对抗制 新产品开发 过程(计算) 营销 工程类 业务 几何学 操作系统 航空航天工程 数学
作者
Alex Burnap,John R. Hauser,Artem Timoshenko
出处
期刊:Marketing Science [Institute for Operations Research and the Management Sciences]
卷期号:42 (6): 1029-1056 被引量:31
标识
DOI:10.1287/mksc.2022.1429
摘要

Aesthetics are critically important to market acceptance. In the automotive industry, an improved aesthetic design can boost sales by 30% or more. Firms invest heavily in designing and testing aesthetics. A single automotive “theme clinic” can cost more than $100,000, and hundreds are conducted annually. We propose a model to augment the commonly used aesthetic design process by predicting aesthetic scores and automatically generating innovative and appealing product designs. The model combines a probabilistic variational autoencoder (VAE) with adversarial components from generative adversarial networks (GAN) and a supervised learning component. We train and evaluate the model with data from an automotive partner—images of 203 SUVs evaluated by targeted consumers and 180,000 high-quality unrated images. Our model predicts well the appeal of new aesthetic designs—43.5% improvement relative to a uniform baseline and substantial improvement over conventional machine learning models and pretrained deep neural networks. New automotive designs are generated in a controllable manner for use by design teams. We empirically verify that automatically generated designs are (1) appealing to consumers and (2) resemble designs that were introduced to the market five years after our data were collected. We provide an additional proof-of-concept application using open-source images of dining room chairs. History: Puneet Manchanda served as the senior editor. Funding: A. Burnap received support from General Motors to partially fund a postdoctoral research position for the research conducted in this work. He certifies that none of the research or its results were censored or obfuscated in its publication. J. Hauser and A. Timoshenko certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Supplemental Material: The data files are available at https://doi.org/10.1287/mksc.2022.1429 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鸢尾完成签到 ,获得积分10
1秒前
1秒前
可爱的函函应助LouieHuang采纳,获得10
2秒前
ZY完成签到 ,获得积分10
2秒前
星火完成签到,获得积分10
2秒前
HHCC1006完成签到,获得积分10
2秒前
学术小白发布了新的文献求助10
3秒前
滚筒洗衣机完成签到,获得积分20
3秒前
暴躁的酸奶应助朝气采纳,获得10
3秒前
3秒前
霖宸羽完成签到,获得积分10
4秒前
NeoWu完成签到,获得积分10
4秒前
YG完成签到,获得积分10
5秒前
吱哦周完成签到,获得积分10
5秒前
5秒前
dola完成签到,获得积分10
5秒前
5秒前
manman发布了新的文献求助10
6秒前
cqbrain123完成签到,获得积分10
6秒前
小魏小魏完成签到,获得积分10
6秒前
大个应助冷酷的英杰采纳,获得10
6秒前
7秒前
bian完成签到 ,获得积分10
7秒前
8秒前
bc应助于芋菊采纳,获得50
8秒前
彩色的过客完成签到,获得积分10
8秒前
xlj730227完成签到 ,获得积分10
8秒前
夏侯三问完成签到,获得积分10
8秒前
8秒前
大土豆子发布了新的文献求助10
9秒前
9秒前
马敬丽完成签到,获得积分20
9秒前
虎虎发布了新的文献求助10
9秒前
852应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
1sunpf完成签到,获得积分10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
布吉岛呀完成签到 ,获得积分10
10秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549